Microgrid (MG) is a small entity of electrical network which comprises of various Distributed Generation (DG) sources, storage devices, and group of loads in various classes. MG provides reliable and secure energy sup...Microgrid (MG) is a small entity of electrical network which comprises of various Distributed Generation (DG) sources, storage devices, and group of loads in various classes. MG provides reliable and secure energy supply to the critical loads of communities while operating either in on-grid or off-grid mode. In this study, a coordinated power management control strategy for a typical low voltage (LV) MG network with integration of solar Photovoltaic (PV) and storage facility has been developed and analysed in Matlab-Simu-link software environment at various modes (on-grid, off-grid, and on-grid to off-grid transition) of MG operation. Solar PV and battery power inverters are considered as grid-support grid-forming (GsGfm) Voltage Source Inverter (VSI) with the implementation of modified droop and virtual output impedance control strategies. Proposed control strategy supports coordinated control operation between PV units and battery storage, equal power sharing among the DG sources, and smooth MG mode transition with regulation of voltage and frequency level in MG network. In addition, voltage and current THD level were analysed and verified as per the standard of AS4777.展开更多
Low voltage three-phase four-wire AC distribution grids may experience high neutral current,mainly caused by asymmetrical distribution of single-phase loads in three phases.High neutral current will not only increase ...Low voltage three-phase four-wire AC distribution grids may experience high neutral current,mainly caused by asymmetrical distribution of single-phase loads in three phases.High neutral current will not only increase line losses but also result in neutral potential variations.For the LV AC distribution grid established by a grid-forming inverter(e.g.,uninterruptible power supply and solid-state-transformer),it also suffers from the same neutral current issues.Therefore,this paper comparatively studies several neutral current control approaches and their impacts on grid voltage balance,which is required by grid code.Then,this paper proposes an optimal neutral current control approach,which can obtain maximum neutral current suppression with less impact on grid voltage balance.The correctness of the theoretical analysis is validated through both simulation and experimental results.展开更多
The participation of photovoltaic(PV)plants in supporting the transient voltage caused by commutation failure in the line-commutated-converter-based high voltage direct current(LCC-HVDC)system is of great significance...The participation of photovoltaic(PV)plants in supporting the transient voltage caused by commutation failure in the line-commutated-converter-based high voltage direct current(LCC-HVDC)system is of great significance,as it can enhance the DC transmission ability.However,it is found that the gridfollowing(GFL)PV converters face the problem of mismatch between reactive power response and transient voltage characteristic when the voltage converts from low voltage to overvoltage,further aggravating the overvoltage amplitude.Thus,this article proposes a transient voltage support strategy based on the gridforming(GFM)medium voltage PV converter.The proposed strategy takes the advantage of the close equivalent electrical distance between the converter and grid,which can autonomously control the converter terminal voltage through GFM control with adaptive voltage droop coefficient.The simulation results show that the proposed strategy can ensure the output reactive power of the PV converter quickly matches the transient voltage characteristic at different stages,indicating that the proposed strategy can effectively support the transient voltage.展开更多
The penetration of distributed energy resources in electrical grids has been steadily increasing in an effort to reduce greenhouse gas emissions.Inverters,as interfaces between distributed energy resources and grids,h...The penetration of distributed energy resources in electrical grids has been steadily increasing in an effort to reduce greenhouse gas emissions.Inverters,as interfaces between distributed energy resources and grids,have become critical assets in modern power systems.In recent years,the development and application of grid-forming inverters have gained significant traction due to their capability of supporting power grid operations.A comprehensive review of grid-forming inverters is presented for power system applications.A comparison between grid-forming inverters and grid-following inverters is conducted in terms of their functionalities to highlight the potential of grid-forming inverter technologies in support of power system stability and resiliency.In addition,advanced control strategies integrated into grid-forming inverters under various operation conditions are presented through reviewing the innovations introduced in recent literature and in industrial applications.This paper is intended to provide an updated reference regarding grid-forming inverters for power system applications to researchers and practitioners in the field of power electronics.展开更多
Grid-forming converters(GFMs)are faced with the threat of transient inrush current and synchronization instability issues when subjected to grid faults.Instead of disconnecting from the grid unintentionally,GFMs are r...Grid-forming converters(GFMs)are faced with the threat of transient inrush current and synchronization instability issues when subjected to grid faults.Instead of disconnecting from the grid unintentionally,GFMs are required to have fault ride through(FRT)capability to maintain safe and stable operation in grid-connected mode during grid fault periods.In recent studies,different FRT control strategies with distinguishing features and that are feasible for different operation conditions have been proposed for GFMs.To determine their application scope,an intuitive comparison of the transient performance of different FRT control strategies is presented in this paper.First,three typical FRT control strategies(virtual impedance,current limiters,and mode-switching control)are introduced and transient mathematical models are established.A detailed comparison analysis on transient inrush current and transient synchronization stability is then presented.The results will be useful for guiding the selection and design of FRT control strategies.Finally,simulation results based on PSCAD/EMTDC are considered to verify the correctness of the theoretical analysis.展开更多
Grid-forming(GFM)control based high-voltage DC(HVDC)systems and renewable energy sources(RESs)provide support for enhancing the stability of power systems.However,the interaction and coordination of frequency support ...Grid-forming(GFM)control based high-voltage DC(HVDC)systems and renewable energy sources(RESs)provide support for enhancing the stability of power systems.However,the interaction and coordination of frequency support between the GFM-based modular multilevel converter based HVDC(MMC-HVDC)and grid-following(GFL)based RESs or GFM-based RESs have not been fully investigated,which are examined in this study.First,the detailed AC-and DC-side impedances of GFM-based MMC-HVDC are analyzed.The impedance characteristics of GFL-and GFM-based wind turbines are next analyzed.Then,the influences of GFL-and GFM-based wind farms(WFs)on the DC-and AC-side stabilities of WF-integrated MMC-HVDC systems are compared and evaluated.The results show that the GFM-based wind turbine performs better than the GFL-based wind turbine.Accordingly,to support a receiving-end AC system,the corresponding frequency supporting strategies are proposed based on the GFM control for WF-integrated MMC-HVDC systems.The GFM-based WF outperforms the GFL-based WF in terms of stability and response time.Simulations in PSCAD/EMTDC demonstrate the DC-and AC-side stability issues and seamless grid support from the RESs,i.e.,WFs,to the receiving-end AC system.展开更多
By simulating the operating dynamics of synchronous generators(SGs),the use of virtual synchronous gen-rators(VSGs)can help overcome inverter-based generators'shortcomings of low inertia and minimal damping for gr...By simulating the operating dynamics of synchronous generators(SGs),the use of virtual synchronous gen-rators(VSGs)can help overcome inverter-based generators'shortcomings of low inertia and minimal damping for gridforming applications.VSGs'stability are very important for their solar and wind electricity applications.Currently,the related research primarily focuses on VSGs and their applications for microgrids.There has been little research to explore how VSGs effect low frequency oscillations in power transmission systems.This paper describes a small-signal model of a VSGSG interconnected system,which is suitable for studying low frequency oscillation damping in a power transmission grid.Based on this model,the effects of VSGs on low frequency oscillations are compared with the effects of SGs to reveal the mechanism of how VSGs infuence damping characteristics.The influence of each VSG control loop on oscillations is also analyzed in this paper.Then,the low frequency oscillation risks with different types of VSGs are described.Finally,experiments on a real-time laboratory(RT-LAB)platform are conducted to verify the small-signal analysis results.展开更多
文摘Microgrid (MG) is a small entity of electrical network which comprises of various Distributed Generation (DG) sources, storage devices, and group of loads in various classes. MG provides reliable and secure energy supply to the critical loads of communities while operating either in on-grid or off-grid mode. In this study, a coordinated power management control strategy for a typical low voltage (LV) MG network with integration of solar Photovoltaic (PV) and storage facility has been developed and analysed in Matlab-Simu-link software environment at various modes (on-grid, off-grid, and on-grid to off-grid transition) of MG operation. Solar PV and battery power inverters are considered as grid-support grid-forming (GsGfm) Voltage Source Inverter (VSI) with the implementation of modified droop and virtual output impedance control strategies. Proposed control strategy supports coordinated control operation between PV units and battery storage, equal power sharing among the DG sources, and smooth MG mode transition with regulation of voltage and frequency level in MG network. In addition, voltage and current THD level were analysed and verified as per the standard of AS4777.
基金the National Natural Science Foundation of China(NSFC)under Grant 51767017National Science and Technology Major Project of Gansu Province under Grant 19ZD2GA003.
文摘Low voltage three-phase four-wire AC distribution grids may experience high neutral current,mainly caused by asymmetrical distribution of single-phase loads in three phases.High neutral current will not only increase line losses but also result in neutral potential variations.For the LV AC distribution grid established by a grid-forming inverter(e.g.,uninterruptible power supply and solid-state-transformer),it also suffers from the same neutral current issues.Therefore,this paper comparatively studies several neutral current control approaches and their impacts on grid voltage balance,which is required by grid code.Then,this paper proposes an optimal neutral current control approach,which can obtain maximum neutral current suppression with less impact on grid voltage balance.The correctness of the theoretical analysis is validated through both simulation and experimental results.
基金supported by the Science and Technology Project of State Grid Corporation of China(5500-202258115A-1-1-ZN).
文摘The participation of photovoltaic(PV)plants in supporting the transient voltage caused by commutation failure in the line-commutated-converter-based high voltage direct current(LCC-HVDC)system is of great significance,as it can enhance the DC transmission ability.However,it is found that the gridfollowing(GFL)PV converters face the problem of mismatch between reactive power response and transient voltage characteristic when the voltage converts from low voltage to overvoltage,further aggravating the overvoltage amplitude.Thus,this article proposes a transient voltage support strategy based on the gridforming(GFM)medium voltage PV converter.The proposed strategy takes the advantage of the close equivalent electrical distance between the converter and grid,which can autonomously control the converter terminal voltage through GFM control with adaptive voltage droop coefficient.The simulation results show that the proposed strategy can ensure the output reactive power of the PV converter quickly matches the transient voltage characteristic at different stages,indicating that the proposed strategy can effectively support the transient voltage.
文摘The penetration of distributed energy resources in electrical grids has been steadily increasing in an effort to reduce greenhouse gas emissions.Inverters,as interfaces between distributed energy resources and grids,have become critical assets in modern power systems.In recent years,the development and application of grid-forming inverters have gained significant traction due to their capability of supporting power grid operations.A comprehensive review of grid-forming inverters is presented for power system applications.A comparison between grid-forming inverters and grid-following inverters is conducted in terms of their functionalities to highlight the potential of grid-forming inverter technologies in support of power system stability and resiliency.In addition,advanced control strategies integrated into grid-forming inverters under various operation conditions are presented through reviewing the innovations introduced in recent literature and in industrial applications.This paper is intended to provide an updated reference regarding grid-forming inverters for power system applications to researchers and practitioners in the field of power electronics.
基金supported by the National Natural Science Foundation of China(Grant No.52207190)Jiangsu Excellent Postdoctoral Program,China(Grant No.2022ZB80).
文摘Grid-forming converters(GFMs)are faced with the threat of transient inrush current and synchronization instability issues when subjected to grid faults.Instead of disconnecting from the grid unintentionally,GFMs are required to have fault ride through(FRT)capability to maintain safe and stable operation in grid-connected mode during grid fault periods.In recent studies,different FRT control strategies with distinguishing features and that are feasible for different operation conditions have been proposed for GFMs.To determine their application scope,an intuitive comparison of the transient performance of different FRT control strategies is presented in this paper.First,three typical FRT control strategies(virtual impedance,current limiters,and mode-switching control)are introduced and transient mathematical models are established.A detailed comparison analysis on transient inrush current and transient synchronization stability is then presented.The results will be useful for guiding the selection and design of FRT control strategies.Finally,simulation results based on PSCAD/EMTDC are considered to verify the correctness of the theoretical analysis.
基金supported by National Key R&D Program of China(No.2020YFB1506600)。
文摘Grid-forming(GFM)control based high-voltage DC(HVDC)systems and renewable energy sources(RESs)provide support for enhancing the stability of power systems.However,the interaction and coordination of frequency support between the GFM-based modular multilevel converter based HVDC(MMC-HVDC)and grid-following(GFL)based RESs or GFM-based RESs have not been fully investigated,which are examined in this study.First,the detailed AC-and DC-side impedances of GFM-based MMC-HVDC are analyzed.The impedance characteristics of GFL-and GFM-based wind turbines are next analyzed.Then,the influences of GFL-and GFM-based wind farms(WFs)on the DC-and AC-side stabilities of WF-integrated MMC-HVDC systems are compared and evaluated.The results show that the GFM-based wind turbine performs better than the GFL-based wind turbine.Accordingly,to support a receiving-end AC system,the corresponding frequency supporting strategies are proposed based on the GFM control for WF-integrated MMC-HVDC systems.The GFM-based WF outperforms the GFL-based WF in terms of stability and response time.Simulations in PSCAD/EMTDC demonstrate the DC-and AC-side stability issues and seamless grid support from the RESs,i.e.,WFs,to the receiving-end AC system.
文摘By simulating the operating dynamics of synchronous generators(SGs),the use of virtual synchronous gen-rators(VSGs)can help overcome inverter-based generators'shortcomings of low inertia and minimal damping for gridforming applications.VSGs'stability are very important for their solar and wind electricity applications.Currently,the related research primarily focuses on VSGs and their applications for microgrids.There has been little research to explore how VSGs effect low frequency oscillations in power transmission systems.This paper describes a small-signal model of a VSGSG interconnected system,which is suitable for studying low frequency oscillation damping in a power transmission grid.Based on this model,the effects of VSGs on low frequency oscillations are compared with the effects of SGs to reveal the mechanism of how VSGs infuence damping characteristics.The influence of each VSG control loop on oscillations is also analyzed in this paper.Then,the low frequency oscillation risks with different types of VSGs are described.Finally,experiments on a real-time laboratory(RT-LAB)platform are conducted to verify the small-signal analysis results.