The beam tail effect of multi-bunches will influence the electron beam performance in a high intensity thermionic RF gun. Beam dynamic calculations that illustrate the working states of single beam tail and multi-puls...The beam tail effect of multi-bunches will influence the electron beam performance in a high intensity thermionic RF gun. Beam dynamic calculations that illustrate the working states of single beam tail and multi-pulse feed-in of a performance-enhanced EC-ITC (external cathode independent tunable cavity) RF gun for an FEL (free electron laser) injector are performed to estimate the extracted bunch properties. By using both Parmela and homemade MATLAB codes, the effects of a single beam tail as well as interactions of multi-pulses are analyzed, where a ring-based electron algorithm is adopted to calculated RF fields and the space-charge field. Furthermore, the procedure of unexpected deviated-energy particles mixed with an effective bunch head is described by the MATLAB code as well. As a result, the performance-enhanced EC-ITC RF gun is proved to have the capability to extract continual stable bunches suitable for a high requirement THz-FEL.展开更多
To meet the requirements of high performance THz-FEL (Free Electron Laser), a compact scheme of FEL injector was proposed. A thermionic cathode was chosen to emit electrons instead of a photo-cathode with its comple...To meet the requirements of high performance THz-FEL (Free Electron Laser), a compact scheme of FEL injector was proposed. A thermionic cathode was chosen to emit electrons instead of a photo-cathode with its complex structure and high cost. The effective bunch charge was improved to ~200 pC by adopting an enhanced EC-ITC (External Cathode Independently Tunable Cells) RF gun to extract micro-bunches; back bombardment effects were almost eliminated as well. Constant gradient accelerator structures were designed to improve energy to ~14 MeV, while the focusing system was applied for emittance suppressing and bunch state maintenance. The physical design and beam dynamics of the key components for the FEL injector were analyzed. Furthermore, start- to-end simulations with multi-pulses were performed using homemade MATLAB and Parmela. The results show that continual high brightness electron bunches with a low energy spread and emittance could be obtained stably.展开更多
In this study,an X-band standing-wave biperiodic linear accelerator was developed for medical radiotherapy that can accel-erate electrons to 9 MeV using a 2.4-MW klystron.The structure works atπ/2 mode and adopts mag...In this study,an X-band standing-wave biperiodic linear accelerator was developed for medical radiotherapy that can accel-erate electrons to 9 MeV using a 2.4-MW klystron.The structure works atπ/2 mode and adopts magnetic coupling between cavities,generating the appropriate adjacent mode separation of 10 MHz.The accelerator is less than 600-mm long and constitutes four bunching cells and 29 normal cells.Geometry optimizations,full-scale radiofrequency(RF)simulations,and beam dynamics calculations were performed.The accelerator was fabricated and examined using a low-power RF test.The cold test results showed a good agreement with the simulation and actual measurement results.In the high-power RF test,the output beam current,energy spectrum,capture ratio,and spot size at the accelerator exit were measured.With the input power of 2.4 MW,the pulse current was 100 mA,and the output spot root-mean-square radius was approximately 0.5 mm.The output kinetic energy was 9.04 MeV with the spectral FWHM of 3.5%,demonstrating the good performance of this accelerator.展开更多
An EC-ITC (External-Cathode Independently Tunable Cells) RF gun was employed with the aim of obtaining short-pulse bunches with high peak current for a terahertz radiation source. A gridded DC gun plays a key role a...An EC-ITC (External-Cathode Independently Tunable Cells) RF gun was employed with the aim of obtaining short-pulse bunches with high peak current for a terahertz radiation source. A gridded DC gun plays a key role as the external injecting electron source of the ITC RF gun, the performance of which determines the beam quality in the injector and transport line. In order to make the beam well compressed in the ITC RF gun, the energy of the electrons acquired from the gridded DC gun should be 15 keV at most. A proper structure of the gridded gun with double-anode is shown to overcome the strong space- charge force on the cathode, which is able to generate 6 μs beam with 4.5 A current successfully.展开更多
Terahertz radiation has broad application prospects due to its ability to penetrate deep into many organic materials without the damage caused by ionizing radiations. A free electron laser (FEL)-based THz source is ...Terahertz radiation has broad application prospects due to its ability to penetrate deep into many organic materials without the damage caused by ionizing radiations. A free electron laser (FEL)-based THz source is the best choice to produce high-power radiation. In this paper, a 14 MeV injector is introduced for generating high-quality beam for FEL, is composed of an EC-ITC RF gun, compensating coils and a travelling-wave structure. Beam dynamics simulations have been done with ASTRA code to verify the design and to optimize parameters. Simulations of the operating mode at 6 MeV have also been executed.展开更多
文摘The beam tail effect of multi-bunches will influence the electron beam performance in a high intensity thermionic RF gun. Beam dynamic calculations that illustrate the working states of single beam tail and multi-pulse feed-in of a performance-enhanced EC-ITC (external cathode independent tunable cavity) RF gun for an FEL (free electron laser) injector are performed to estimate the extracted bunch properties. By using both Parmela and homemade MATLAB codes, the effects of a single beam tail as well as interactions of multi-pulses are analyzed, where a ring-based electron algorithm is adopted to calculated RF fields and the space-charge field. Furthermore, the procedure of unexpected deviated-energy particles mixed with an effective bunch head is described by the MATLAB code as well. As a result, the performance-enhanced EC-ITC RF gun is proved to have the capability to extract continual stable bunches suitable for a high requirement THz-FEL.
文摘To meet the requirements of high performance THz-FEL (Free Electron Laser), a compact scheme of FEL injector was proposed. A thermionic cathode was chosen to emit electrons instead of a photo-cathode with its complex structure and high cost. The effective bunch charge was improved to ~200 pC by adopting an enhanced EC-ITC (External Cathode Independently Tunable Cells) RF gun to extract micro-bunches; back bombardment effects were almost eliminated as well. Constant gradient accelerator structures were designed to improve energy to ~14 MeV, while the focusing system was applied for emittance suppressing and bunch state maintenance. The physical design and beam dynamics of the key components for the FEL injector were analyzed. Furthermore, start- to-end simulations with multi-pulses were performed using homemade MATLAB and Parmela. The results show that continual high brightness electron bunches with a low energy spread and emittance could be obtained stably.
基金the Key R&D Project of the Ministry of Science and Technology of China(No.2022YFC2402300).
文摘In this study,an X-band standing-wave biperiodic linear accelerator was developed for medical radiotherapy that can accel-erate electrons to 9 MeV using a 2.4-MW klystron.The structure works atπ/2 mode and adopts magnetic coupling between cavities,generating the appropriate adjacent mode separation of 10 MHz.The accelerator is less than 600-mm long and constitutes four bunching cells and 29 normal cells.Geometry optimizations,full-scale radiofrequency(RF)simulations,and beam dynamics calculations were performed.The accelerator was fabricated and examined using a low-power RF test.The cold test results showed a good agreement with the simulation and actual measurement results.In the high-power RF test,the output beam current,energy spectrum,capture ratio,and spot size at the accelerator exit were measured.With the input power of 2.4 MW,the pulse current was 100 mA,and the output spot root-mean-square radius was approximately 0.5 mm.The output kinetic energy was 9.04 MeV with the spectral FWHM of 3.5%,demonstrating the good performance of this accelerator.
基金Supported by National Natural Science Foundation of China(10875116)
文摘An EC-ITC (External-Cathode Independently Tunable Cells) RF gun was employed with the aim of obtaining short-pulse bunches with high peak current for a terahertz radiation source. A gridded DC gun plays a key role as the external injecting electron source of the ITC RF gun, the performance of which determines the beam quality in the injector and transport line. In order to make the beam well compressed in the ITC RF gun, the energy of the electrons acquired from the gridded DC gun should be 15 keV at most. A proper structure of the gridded gun with double-anode is shown to overcome the strong space- charge force on the cathode, which is able to generate 6 μs beam with 4.5 A current successfully.
文摘Terahertz radiation has broad application prospects due to its ability to penetrate deep into many organic materials without the damage caused by ionizing radiations. A free electron laser (FEL)-based THz source is the best choice to produce high-power radiation. In this paper, a 14 MeV injector is introduced for generating high-quality beam for FEL, is composed of an EC-ITC RF gun, compensating coils and a travelling-wave structure. Beam dynamics simulations have been done with ASTRA code to verify the design and to optimize parameters. Simulations of the operating mode at 6 MeV have also been executed.