Topographic shielding(TS) is an important factor in cosmogenic nuclide surface exposure dating. The development of geographic information systems(GIS) and the availability of digital elevation models(DEMs) make it pos...Topographic shielding(TS) is an important factor in cosmogenic nuclide surface exposure dating. The development of geographic information systems(GIS) and the availability of digital elevation models(DEMs) make it possible to derive this factor directly from a DEM. Most available GIS models derive the TS factors for an area(all cells in a DEM) without the consideration of surface conditions of individual sites, such as the strike, dip,and height above ground, into the calculation. This paper presents a new GIS model to derive the TS factors for discrete sample sites. This model uses the Skyline and Skyline Graph functions in ArcGIS to extract the set of azimuth and elevation angles of topographic obstructions around each site from a DEM(considering the sample height above ground)and then incorporates the strike and dip information of the sample surface to derive the TS factor. All processing tools and steps are streamlined in ArcGIS modelbuilder and this model can be run like a standard ArcGIS geoprocessing tool. It provides an easy and user-friendly means to derive the TS factors for discrete samples based on a DEM and the measured strike, dip and sample height for each site.展开更多
Topographic shielding of cosmic radiation flux is a key parameter in using cosmogenic nuclides to determine surface exposure ages or erosion rates. Traditionally, this parameter is measured in the field and uncertaint...Topographic shielding of cosmic radiation flux is a key parameter in using cosmogenic nuclides to determine surface exposure ages or erosion rates. Traditionally, this parameter is measured in the field and uncertainty and/or inconsistency may exist among different investigators. This paper provides an ArcGIS python code to determine topographic shielding factors using digital elevation models (DEMs). This code can be imported into ArcGIS as a geoprocessing tool with a user-friendly graphical interface. The DEM-derived parameters using this method were validated with field measurements in central Tian Shan. Results indicate that DEM-derived shielding factors are consistent with field-measured values. It provides a valuable tool to save fieldwork efforts and has the potential to provide consistent results for different regions in the world to facilitate the comparison of cosmogenie nuclide results.展开更多
Displacement monitoring in open-pit mines is one of the important tasks for safe management of mining processes.Differential interferometric synthetic aperture radar(DInSAR),mounted on an artificial satellite,has the ...Displacement monitoring in open-pit mines is one of the important tasks for safe management of mining processes.Differential interferometric synthetic aperture radar(DInSAR),mounted on an artificial satellite,has the potential to be a cost-effective method for monitoring surface displacements over extensive areas,such as open-pit mines.DInSAR requires the ground surface elevation data in the process of its analysis as a digital elevation model(DEM).However,since the topography of the ground surface in open-pit mines changes largely due to excavations,measurement errors can occur due to insufficient information on the elevation of mining areas.In this paper,effect of different elevation models on the accuracy of the displacement monitoring results by DInSAR is investigated at a limestone quarry.In addition,validity of the DInSAR results using an appropriate DEM is examined by comparing them with the results obtained by global positioning system(GPS)monitoring conducted for three years at the same limestone quarry.It is found that the uncertainty of DEMs induces large errors in the displacement monitoring results if the baseline length of the satellites between the master and the slave data is longer than a few hundred meters.Comparing the monitoring results of DInSAR and GPS,the root mean square error(RMSE)of the discrepancy between the two sets of results is less than 10 mm if an appropriate DEM,considering the excavation processes,is used.It is proven that DInSAR can be applied for monitoring the displacements of mine slopes with centimeter-level accuracy.展开更多
Although many studies have investigated slope gradient uncertainty derived from Digital Elevation Models(DEMs), the research concerning slope length uncertainty is far from mature. This discrepancy affects the availab...Although many studies have investigated slope gradient uncertainty derived from Digital Elevation Models(DEMs), the research concerning slope length uncertainty is far from mature. This discrepancy affects the availability and accuracy of soil erosion as well as hydrological modeling. This study investigates the formation and distribution of existing errors and uncertainties in slope length derivation based on 5-m resolution DEMs of the Loess Plateau in the middle of China. The slope length accuracy in three different landform areas is examined to analyse algorithm effects. The experiments indicate that the accuracy of the flat test area is lower than that of the rougher areas. The value from the specific contributing area(SCA) method is greater than the cumulative slope length(CSL), and the differences between these two methods arise from the shape of the upslope area. The variation of mean slope length derived from various DEM resolutions and landforms. The slope length accuracy decreases with increasing grid size and terrain complexity at the six test sites. A regression model is built to express the relationship of mean slope length with DEM resolution less than 85 m and terrain complexity represented by gully density. The results support the understanding of the slope length accuracy, thereby aiding in the effective evaluation of the modeling effect of surface process.展开更多
Digital Elevation Models (DEMs) are constructed using altitude point data and various interpolation techniques. The quality and accuracy of DEMs depend on data point density and the interpolation technique used. Usual...Digital Elevation Models (DEMs) are constructed using altitude point data and various interpolation techniques. The quality and accuracy of DEMs depend on data point density and the interpolation technique used. Usually however, altitude point data especially in plain areas do not provide realistic DEMs, mainly due to errors produced as a result of the interpolation technique, resulting in imprecise topographic representation of the landscape. Such inconsistencies, which are mainly in the form of surface depressions, are especially crucial when DEMs are used as input to hydrologic modeling for impact studies, as they have a negative impact on the model’s performance. This study presents a Geographical Information System (GIS) tool, named LAN (Line Attribute Network), for the improvement of DEM construction techniques and their spatial accuracy, using drainage network attributes. The developed tool does not alter the interpolation technique, but provides higher point density in areas where most DEM problems occur, such as lowland areas or places where artificial topographic features exist. Application of the LAN tool in two test sites showed that it provides considerable DEM improvement.展开更多
Boundary extraction of watershed is an important step in forest landscape research. The boundary of the upriver wa-tershed of the Hunhe River in the sub-alpine Qingyuan County of eastern Liaoning Province, China was e...Boundary extraction of watershed is an important step in forest landscape research. The boundary of the upriver wa-tershed of the Hunhe River in the sub-alpine Qingyuan County of eastern Liaoning Province, China was extracted by digital elevation modeling (DEM) data in ArcInfo8.1. Remote sensing image of the corresponding region was applied to help modify its copy according to Enhanced Thematic Mapper (ETM) image抯 profuse geomorphological structure information. Both the DEM-dependent boundary and modified copy were overlapped with county map and drainage network map to visually check the effects of result. Overlap of county map suggested a nice extraction of the boundary line since the two layers matched precisely, which indicated the DEM-dependent boundary by program was effective and precise. Further upload of drainage network showed discrepancies between the boundary and the drainage network. Altogether, there were three sections of the extraction result that needed to correct. Compared with this extraction boundary, the modified boundary had a better match to the drainage network as well as to the county map. Comprehensive analysis demonstrated that the program extraction has generally fine precision in position and excels the digitized result by hand. The errors of the DEM-dependant extraction are due to the fact that it is difficult for program to recognize sections of complex landform especially altered by human activities, but these errors are discernable and adjustable because the spatial resolution of ETM image is less than that of DEM. This study result proved that application of remote sensing information could help obtain better result when DEM method is used in extraction of watershed boundary.展开更多
In China′s Loess Plateau area, gully head is the most active zone of a drainage system in gully areas. The differentiation of loess gully head follows geospatial patterns and reflects the process of the loess landfor...In China′s Loess Plateau area, gully head is the most active zone of a drainage system in gully areas. The differentiation of loess gully head follows geospatial patterns and reflects the process of the loess landform development and evolution of its drainage system to some extent. In this study, the geomorphic meaning, basic characteristics, morphological structure and the basic types of loess gully heads were systematically analysed. Then, the loess gully head′s conceptual model was established, and an extraction method based on Digital Elevation Model(DEM) for loess gully head features and elements was proposed. Through analysing the achieved statistics of loess gully head features, loess gully heads have apparently similar and different characteristics depending on the different loess landforms where they are found. The loess head characteristics reflect their growth period and evolution tendency to a certain degree, and they indirectly represent evolutionary mechanisms. In addition, the loess gully developmental stages and the evolutionary processes can be deduced by using loess gully head characteristics. This study is of great significance for development and improvement of the theoretical system for describing loess gully landforms.展开更多
This paper investigates the differences that result from applying different approaches to uncertainty modeling and reports an experimental examining error estimation and propagation in elevation and slope, with the la...This paper investigates the differences that result from applying different approaches to uncertainty modeling and reports an experimental examining error estimation and propagation in elevation and slope, with the latter derived from the former. It is confirmed that significant differences exist between uncertainty descriptors, and propagation of uncertainty to end products is immensely affected by the specification of source uncertainty.展开更多
Researchers in P.R.China commonly create triangulate irregular networks(TINs) from contours and then convert TINs into digital elevation models(DEMs).However,the DEM produced by this method can not precisely describe ...Researchers in P.R.China commonly create triangulate irregular networks(TINs) from contours and then convert TINs into digital elevation models(DEMs).However,the DEM produced by this method can not precisely describe and simulate key hydrological features such as rivers and drainage borders.Taking a hilly region in southwestern China as a research area and using ArcGISTM software,we analyzed the errors of different interpolations to obtain distributions of the errors and precisions of different algorithms and to provide references for DEM productions.The results show that different interpolation errors satisfy normal distributions,and large error exists near the structure line of the terrain.Furthermore,the results also show that the precision of a DEM interpolated with the Australian National University digital elevation model(ANUDEM) is higher than that interpolated with TIN.The DEM interpolated with TIN is acceptable for generating DEMs in the hilly region of southwestern China.展开更多
A 3-craft formation configuration is proposed to perform the digital elevation model (DEM) for the distributed spacebome interferometric synthetic aperture radar (InSAR), and it is optimized by the modified ant co...A 3-craft formation configuration is proposed to perform the digital elevation model (DEM) for the distributed spacebome interferometric synthetic aperture radar (InSAR), and it is optimized by the modified ant colony algorithm to have the best compatibility with J2 invariant orbits created by differential correction algorithm. The configuration has succeeded in assigning the across-track baseline to vary periodically and with its mean value equal to the optimal baseline determined by the relative height measurement accuracy. The required relationship between crafts' magnitudes and phases is formulated for the general case of interferometry measure from non-orthographic and non-lateral view. The J2 invariant configurations created by differential correction algorithm are employed to investigate their compatibility with the required configuration. The colony algorithm is applied to search the optimal configuration holding the near-constant across-track baseline under the J2 perturbation, and the absolute height measurement accuracy is preferable as expected.展开更多
Solar radiation is the primary energy source that drives many of Earth’s physical and biological processes and determines the patterns of climate and productivity on the surface of the Earth.A fundamental proportion ...Solar radiation is the primary energy source that drives many of Earth’s physical and biological processes and determines the patterns of climate and productivity on the surface of the Earth.A fundamental proportion of solar radiation is composed of shielded extraterrestrial solar radiation(SESR),which can be computed using the slope and aspect derived from a digital elevation model(DEM).The objective of this paper is to determine the influence of the grid spacing of the DEM(the influence of the scale of the DEM)on the errors of slope,aspect and SESR.This paper puts forward the concepts of slope representation error,aspect representation error,and SESR representation error and then studies the relations among these errors and the grid spacing of DEMs.We find that when the grid spacing of a DEM becomes coarser,the average SESR increases;the increase in SESR is dominated by the grid cells of the DEM with a negative slope representation error,whereas SESR generally decreases in the grid cells with a positive slope representation error.Although the grid spacing varies,the distribution of the percentages of positive SESR representation errors on the slope,which is classified into 11 slope intervals,is independent of the grid spacing;this distribution is concentrated across some slope intervals.Moreover,the average absolute value and mean square error of the SESR representation error are closely related to those of the slope representation error and the aspect representation error.The findings in this study may be useful for predicting and reducing the errors in SESR measurements and may help to avoid mistakes in foture research and in practical applications in which SESR is the data of interest or plays a vital role in an analysis.展开更多
A grid and Green-Ampt based (Grid-GA)distributed hydrologic physical model was developed for flood simulation and forecasting in semi-humid and semi-arid basin. Based on topographical information of each grid cell e...A grid and Green-Ampt based (Grid-GA)distributed hydrologic physical model was developed for flood simulation and forecasting in semi-humid and semi-arid basin. Based on topographical information of each grid cell extracted fi'om the digital elevation model (DEM) and Green-Ampt infiltration method, the Grid-GA model takes into consideration the redistribution of water content, and consists of vegetation and root interception, evapotranspiration, runoff generation via the excess infiltration mechanism, runoff concentration, and flow routing. The downslope redis- tribution of soil moisture is explicitly calculated on a grid basis, and water exchange among grids within runoff routing along the river drainage networks is taken into consideration. The proposed model and Xin'anjiang model were ap- plied to the upper Lushi basin in the Luohe River, a tributary of the Yellow River, with an area of 4 716 km2 for flood simulation. Results show that both models perform well in flood simulation and can be used for flood forecasting in semi-humid and semi-arid region.展开更多
The geomorphic studies are extremely dependent on the quality and spatial resolution of digital elevation model(DEM)data.The unique terrain characteristics of a particular landscape are derived from DEM,which are resp...The geomorphic studies are extremely dependent on the quality and spatial resolution of digital elevation model(DEM)data.The unique terrain characteristics of a particular landscape are derived from DEM,which are responsible for initiation and development of ephemeral gullies.As the topographic features of an area significantly influences on the erosive power of the water flow,it is an important task the extraction of terrain features from DEM to properly research gully erosion.Alongside,topography is highly correlated with other geo-environmental factors i.e.geology,climate,soil types,vegetation density and floristic composition,runoff generation,which ultimately influences on gully occurrences.Therefore,terrain morphometric attributes derived from DEM data are used in spatial prediction of gully erosion susceptibility(GES)mapping.In this study,remote sensing-Geographic information system(GIS)techniques coupled with machine learning(ML)methods has been used for GES mapping in the parts of Semnan province,Iran.Current research focuses on the comparison of predicted GES result by using three types of DEM i.e.Advanced Land Observation satellite(ALOS),ALOS World 3D-30 m(AW3D30)and Advanced Space borne Thermal Emission and Reflection Radiometer(ASTER)in different resolutions.For further progress of our research work,here we have used thirteen suitable geo-environmental gully erosion conditioning factors(GECFs)based on the multi-collinearity analysis.ML methods of conditional inference forests(Cforest),Cubist model and Elastic net model have been chosen for modelling GES accordingly.Variable’s importance of GECFs was measured through sensitivity analysis and result show that elevation is the most important factor for occurrences of gullies in the three aforementioned ML methods(Cforest=21.4,Cubist=19.65 and Elastic net=17.08),followed by lithology and slope.Validation of the model’s result was performed through area under curve(AUC)and other statistical indices.The validation result of AUC has shown that Cforest is the most appropriate model for predicting the GES assessment in three different DEMs(AUC value of Cforest in ALOS DEM is 0.994,AW3D30 DEM is 0.989 and ASTER DEM is 0.982)used in this study,followed by elastic net and cubist model.The output result of GES maps will be used by decision-makers for sustainable development of degraded land in this study area.展开更多
Subtraction of elevation datasets(e.g.digital elevation models(DEMs)and non-continuous elevation points)acquired at different times is a useful method to monitor landform surface change.Due to heavy post-processing of...Subtraction of elevation datasets(e.g.digital elevation models(DEMs)and non-continuous elevation points)acquired at different times is a useful method to monitor landform surface change.Due to heavy post-processing of these elevation datasets,multi-source errors are introduced into the resulting elevation data products.To improve the estimation of elevation change,co-registration of elevation datasets is a prerequisite.This paper presents an open-source automated GIS tool(arc Pycor)for co-registering elevation datasets.arc Pycor is coded in Python 2.7 and is run via Arc GIS for Desktop.The performances of arc Pycor have been evaluated using a series of experiments.In benchmark tests,the resolved co-registration vectors of arc Pycor are compared to the predefined shift vectors obtained by artificially misaligning the slave DEMs from the master elevation datasets.Results show that arc Pycor is able to co-register DEMs with relative high accuracy and can well align slave DEMs to non-continuous elevation points,which indicates its robustness in co-registering of elevation datasets.arc Pycor is also able to co-register multi-sourced DEMs of different resolutions in mountain areas.展开更多
基金support by the National Science Foundation of the United States(Grant No.BCS-1227018)the National Nature Science Foundation of China(Grant No.41328001)
文摘Topographic shielding(TS) is an important factor in cosmogenic nuclide surface exposure dating. The development of geographic information systems(GIS) and the availability of digital elevation models(DEMs) make it possible to derive this factor directly from a DEM. Most available GIS models derive the TS factors for an area(all cells in a DEM) without the consideration of surface conditions of individual sites, such as the strike, dip,and height above ground, into the calculation. This paper presents a new GIS model to derive the TS factors for discrete sample sites. This model uses the Skyline and Skyline Graph functions in ArcGIS to extract the set of azimuth and elevation angles of topographic obstructions around each site from a DEM(considering the sample height above ground)and then incorporates the strike and dip information of the sample surface to derive the TS factor. All processing tools and steps are streamlined in ArcGIS modelbuilder and this model can be run like a standard ArcGIS geoprocessing tool. It provides an easy and user-friendly means to derive the TS factors for discrete samples based on a DEM and the measured strike, dip and sample height for each site.
基金supported by the Professional Development Award of the University of Tennessee
文摘Topographic shielding of cosmic radiation flux is a key parameter in using cosmogenic nuclides to determine surface exposure ages or erosion rates. Traditionally, this parameter is measured in the field and uncertainty and/or inconsistency may exist among different investigators. This paper provides an ArcGIS python code to determine topographic shielding factors using digital elevation models (DEMs). This code can be imported into ArcGIS as a geoprocessing tool with a user-friendly graphical interface. The DEM-derived parameters using this method were validated with field measurements in central Tian Shan. Results indicate that DEM-derived shielding factors are consistent with field-measured values. It provides a valuable tool to save fieldwork efforts and has the potential to provide consistent results for different regions in the world to facilitate the comparison of cosmogenie nuclide results.
基金partially supported by JSPS KAKENHI(Grant No.16H03153)the Limestone Association of Japan。
文摘Displacement monitoring in open-pit mines is one of the important tasks for safe management of mining processes.Differential interferometric synthetic aperture radar(DInSAR),mounted on an artificial satellite,has the potential to be a cost-effective method for monitoring surface displacements over extensive areas,such as open-pit mines.DInSAR requires the ground surface elevation data in the process of its analysis as a digital elevation model(DEM).However,since the topography of the ground surface in open-pit mines changes largely due to excavations,measurement errors can occur due to insufficient information on the elevation of mining areas.In this paper,effect of different elevation models on the accuracy of the displacement monitoring results by DInSAR is investigated at a limestone quarry.In addition,validity of the DInSAR results using an appropriate DEM is examined by comparing them with the results obtained by global positioning system(GPS)monitoring conducted for three years at the same limestone quarry.It is found that the uncertainty of DEMs induces large errors in the displacement monitoring results if the baseline length of the satellites between the master and the slave data is longer than a few hundred meters.Comparing the monitoring results of DInSAR and GPS,the root mean square error(RMSE)of the discrepancy between the two sets of results is less than 10 mm if an appropriate DEM,considering the excavation processes,is used.It is proven that DInSAR can be applied for monitoring the displacements of mine slopes with centimeter-level accuracy.
基金supported by the National Natural Science Foundation of China(Grant Nos.41471316,41401456)A Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions-PAPD(Grant No.164320H101)+1 种基金Major University Science Research Project of Jiangsu Province(Grant No.13KJA170001)the financial support provided by the PhD Scholarship from Eurasic Pacific Uninet for collaboration research in Austria
文摘Although many studies have investigated slope gradient uncertainty derived from Digital Elevation Models(DEMs), the research concerning slope length uncertainty is far from mature. This discrepancy affects the availability and accuracy of soil erosion as well as hydrological modeling. This study investigates the formation and distribution of existing errors and uncertainties in slope length derivation based on 5-m resolution DEMs of the Loess Plateau in the middle of China. The slope length accuracy in three different landform areas is examined to analyse algorithm effects. The experiments indicate that the accuracy of the flat test area is lower than that of the rougher areas. The value from the specific contributing area(SCA) method is greater than the cumulative slope length(CSL), and the differences between these two methods arise from the shape of the upslope area. The variation of mean slope length derived from various DEM resolutions and landforms. The slope length accuracy decreases with increasing grid size and terrain complexity at the six test sites. A regression model is built to express the relationship of mean slope length with DEM resolution less than 85 m and terrain complexity represented by gully density. The results support the understanding of the slope length accuracy, thereby aiding in the effective evaluation of the modeling effect of surface process.
文摘Digital Elevation Models (DEMs) are constructed using altitude point data and various interpolation techniques. The quality and accuracy of DEMs depend on data point density and the interpolation technique used. Usually however, altitude point data especially in plain areas do not provide realistic DEMs, mainly due to errors produced as a result of the interpolation technique, resulting in imprecise topographic representation of the landscape. Such inconsistencies, which are mainly in the form of surface depressions, are especially crucial when DEMs are used as input to hydrologic modeling for impact studies, as they have a negative impact on the model’s performance. This study presents a Geographical Information System (GIS) tool, named LAN (Line Attribute Network), for the improvement of DEM construction techniques and their spatial accuracy, using drainage network attributes. The developed tool does not alter the interpolation technique, but provides higher point density in areas where most DEM problems occur, such as lowland areas or places where artificial topographic features exist. Application of the LAN tool in two test sites showed that it provides considerable DEM improvement.
基金This work was supported by Knowledge Innovation Pro-gram Chinese Academy of Sciences (No. KZCX2-SW-320-3 & KZCX3-SW-425).
文摘Boundary extraction of watershed is an important step in forest landscape research. The boundary of the upriver wa-tershed of the Hunhe River in the sub-alpine Qingyuan County of eastern Liaoning Province, China was extracted by digital elevation modeling (DEM) data in ArcInfo8.1. Remote sensing image of the corresponding region was applied to help modify its copy according to Enhanced Thematic Mapper (ETM) image抯 profuse geomorphological structure information. Both the DEM-dependent boundary and modified copy were overlapped with county map and drainage network map to visually check the effects of result. Overlap of county map suggested a nice extraction of the boundary line since the two layers matched precisely, which indicated the DEM-dependent boundary by program was effective and precise. Further upload of drainage network showed discrepancies between the boundary and the drainage network. Altogether, there were three sections of the extraction result that needed to correct. Compared with this extraction boundary, the modified boundary had a better match to the drainage network as well as to the county map. Comprehensive analysis demonstrated that the program extraction has generally fine precision in position and excels the digitized result by hand. The errors of the DEM-dependant extraction are due to the fact that it is difficult for program to recognize sections of complex landform especially altered by human activities, but these errors are discernable and adjustable because the spatial resolution of ETM image is less than that of DEM. This study result proved that application of remote sensing information could help obtain better result when DEM method is used in extraction of watershed boundary.
基金Under the auspices of National Youth Science Foundation of China(No.41001294)Key Project of National Natural Science Foundation of China(No.40930531)Research Fund of State Key Laboratory Resources and Environment Information System(No.2010KF0002SA)
文摘In China′s Loess Plateau area, gully head is the most active zone of a drainage system in gully areas. The differentiation of loess gully head follows geospatial patterns and reflects the process of the loess landform development and evolution of its drainage system to some extent. In this study, the geomorphic meaning, basic characteristics, morphological structure and the basic types of loess gully heads were systematically analysed. Then, the loess gully head′s conceptual model was established, and an extraction method based on Digital Elevation Model(DEM) for loess gully head features and elements was proposed. Through analysing the achieved statistics of loess gully head features, loess gully heads have apparently similar and different characteristics depending on the different loess landforms where they are found. The loess head characteristics reflect their growth period and evolution tendency to a certain degree, and they indirectly represent evolutionary mechanisms. In addition, the loess gully developmental stages and the evolutionary processes can be deduced by using loess gully head characteristics. This study is of great significance for development and improvement of the theoretical system for describing loess gully landforms.
文摘This paper investigates the differences that result from applying different approaches to uncertainty modeling and reports an experimental examining error estimation and propagation in elevation and slope, with the latter derived from the former. It is confirmed that significant differences exist between uncertainty descriptors, and propagation of uncertainty to end products is immensely affected by the specification of source uncertainty.
基金Funded by the Natural Science Foundation of Chongqing under Grant No. CSTC2006AB1015.
文摘Researchers in P.R.China commonly create triangulate irregular networks(TINs) from contours and then convert TINs into digital elevation models(DEMs).However,the DEM produced by this method can not precisely describe and simulate key hydrological features such as rivers and drainage borders.Taking a hilly region in southwestern China as a research area and using ArcGISTM software,we analyzed the errors of different interpolations to obtain distributions of the errors and precisions of different algorithms and to provide references for DEM productions.The results show that different interpolation errors satisfy normal distributions,and large error exists near the structure line of the terrain.Furthermore,the results also show that the precision of a DEM interpolated with the Australian National University digital elevation model(ANUDEM) is higher than that interpolated with TIN.The DEM interpolated with TIN is acceptable for generating DEMs in the hilly region of southwestern China.
基金supported by the National Natural Science Foundation of China (10702003)
文摘A 3-craft formation configuration is proposed to perform the digital elevation model (DEM) for the distributed spacebome interferometric synthetic aperture radar (InSAR), and it is optimized by the modified ant colony algorithm to have the best compatibility with J2 invariant orbits created by differential correction algorithm. The configuration has succeeded in assigning the across-track baseline to vary periodically and with its mean value equal to the optimal baseline determined by the relative height measurement accuracy. The required relationship between crafts' magnitudes and phases is formulated for the general case of interferometry measure from non-orthographic and non-lateral view. The J2 invariant configurations created by differential correction algorithm are employed to investigate their compatibility with the required configuration. The colony algorithm is applied to search the optimal configuration holding the near-constant across-track baseline under the J2 perturbation, and the absolute height measurement accuracy is preferable as expected.
基金This work is supported by the National Natural Science Foundation of China(Grant Nos.41771423,41930102,41601408 and 41471331)the Industry University Research Cooperation Project for the Social Development of Fujian Province,China(No.2018Y0054).The author is thankful to the anonymous reviewers for their helpful commentsthe author is indebeted to his students,Wenzhen Zhou,Huange LI.Quanjin LI and Tinmin Lin for retouching the figures.
文摘Solar radiation is the primary energy source that drives many of Earth’s physical and biological processes and determines the patterns of climate and productivity on the surface of the Earth.A fundamental proportion of solar radiation is composed of shielded extraterrestrial solar radiation(SESR),which can be computed using the slope and aspect derived from a digital elevation model(DEM).The objective of this paper is to determine the influence of the grid spacing of the DEM(the influence of the scale of the DEM)on the errors of slope,aspect and SESR.This paper puts forward the concepts of slope representation error,aspect representation error,and SESR representation error and then studies the relations among these errors and the grid spacing of DEMs.We find that when the grid spacing of a DEM becomes coarser,the average SESR increases;the increase in SESR is dominated by the grid cells of the DEM with a negative slope representation error,whereas SESR generally decreases in the grid cells with a positive slope representation error.Although the grid spacing varies,the distribution of the percentages of positive SESR representation errors on the slope,which is classified into 11 slope intervals,is independent of the grid spacing;this distribution is concentrated across some slope intervals.Moreover,the average absolute value and mean square error of the SESR representation error are closely related to those of the slope representation error and the aspect representation error.The findings in this study may be useful for predicting and reducing the errors in SESR measurements and may help to avoid mistakes in foture research and in practical applications in which SESR is the data of interest or plays a vital role in an analysis.
基金Supported by National Natural Science Foundation of China (No.50479017)Program for Changjiang Scholars and Innovative Research Team in University (PCSIRT) (No. IRT0717)
文摘A grid and Green-Ampt based (Grid-GA)distributed hydrologic physical model was developed for flood simulation and forecasting in semi-humid and semi-arid basin. Based on topographical information of each grid cell extracted fi'om the digital elevation model (DEM) and Green-Ampt infiltration method, the Grid-GA model takes into consideration the redistribution of water content, and consists of vegetation and root interception, evapotranspiration, runoff generation via the excess infiltration mechanism, runoff concentration, and flow routing. The downslope redis- tribution of soil moisture is explicitly calculated on a grid basis, and water exchange among grids within runoff routing along the river drainage networks is taken into consideration. The proposed model and Xin'anjiang model were ap- plied to the upper Lushi basin in the Luohe River, a tributary of the Yellow River, with an area of 4 716 km2 for flood simulation. Results show that both models perform well in flood simulation and can be used for flood forecasting in semi-humid and semi-arid region.
文摘The geomorphic studies are extremely dependent on the quality and spatial resolution of digital elevation model(DEM)data.The unique terrain characteristics of a particular landscape are derived from DEM,which are responsible for initiation and development of ephemeral gullies.As the topographic features of an area significantly influences on the erosive power of the water flow,it is an important task the extraction of terrain features from DEM to properly research gully erosion.Alongside,topography is highly correlated with other geo-environmental factors i.e.geology,climate,soil types,vegetation density and floristic composition,runoff generation,which ultimately influences on gully occurrences.Therefore,terrain morphometric attributes derived from DEM data are used in spatial prediction of gully erosion susceptibility(GES)mapping.In this study,remote sensing-Geographic information system(GIS)techniques coupled with machine learning(ML)methods has been used for GES mapping in the parts of Semnan province,Iran.Current research focuses on the comparison of predicted GES result by using three types of DEM i.e.Advanced Land Observation satellite(ALOS),ALOS World 3D-30 m(AW3D30)and Advanced Space borne Thermal Emission and Reflection Radiometer(ASTER)in different resolutions.For further progress of our research work,here we have used thirteen suitable geo-environmental gully erosion conditioning factors(GECFs)based on the multi-collinearity analysis.ML methods of conditional inference forests(Cforest),Cubist model and Elastic net model have been chosen for modelling GES accordingly.Variable’s importance of GECFs was measured through sensitivity analysis and result show that elevation is the most important factor for occurrences of gullies in the three aforementioned ML methods(Cforest=21.4,Cubist=19.65 and Elastic net=17.08),followed by lithology and slope.Validation of the model’s result was performed through area under curve(AUC)and other statistical indices.The validation result of AUC has shown that Cforest is the most appropriate model for predicting the GES assessment in three different DEMs(AUC value of Cforest in ALOS DEM is 0.994,AW3D30 DEM is 0.989 and ASTER DEM is 0.982)used in this study,followed by elastic net and cubist model.The output result of GES maps will be used by decision-makers for sustainable development of degraded land in this study area.
基金supported by the National Natural Science Foundation of China(grant 41901088)the China Postdoctoral Science Foundation(grant 2020M670423)+2 种基金supported by the National Natural Science Foundation of China(grant 41530748)the second Tibetan Plateau Scientific Expedition and Research Program(grant 2019QZKK0202)the 13th Five-year Informatization Plan of Chinese Academy of Sciences(grant XXH13505-06)。
文摘Subtraction of elevation datasets(e.g.digital elevation models(DEMs)and non-continuous elevation points)acquired at different times is a useful method to monitor landform surface change.Due to heavy post-processing of these elevation datasets,multi-source errors are introduced into the resulting elevation data products.To improve the estimation of elevation change,co-registration of elevation datasets is a prerequisite.This paper presents an open-source automated GIS tool(arc Pycor)for co-registering elevation datasets.arc Pycor is coded in Python 2.7 and is run via Arc GIS for Desktop.The performances of arc Pycor have been evaluated using a series of experiments.In benchmark tests,the resolved co-registration vectors of arc Pycor are compared to the predefined shift vectors obtained by artificially misaligning the slave DEMs from the master elevation datasets.Results show that arc Pycor is able to co-register DEMs with relative high accuracy and can well align slave DEMs to non-continuous elevation points,which indicates its robustness in co-registering of elevation datasets.arc Pycor is also able to co-register multi-sourced DEMs of different resolutions in mountain areas.