In order to evaluate the effects of mesh generation techniques and grid convergence on pump performance in centrifugal pump model, three widely used mesh styles including structured hexahedral, unstructured tetrahedra...In order to evaluate the effects of mesh generation techniques and grid convergence on pump performance in centrifugal pump model, three widely used mesh styles including structured hexahedral, unstructured tetrahedral and hybrid prismatic/tetrahedral meshes were generated for a centrifugal pump model. And quantitative grid convergence was assessed based on a grid convergence index(GCI), which accounts for the degree of grid refinement. The structured, unstructured or hybrid meshes are found to have certain difference for velocity distributions in impeller with the change of grid cell number. And the simulation results have errors to different degrees compared with experimental data. The GCI-value for structured meshes calculated is lower than that for the unstructured and hybrid meshes. Meanwhile, the structured meshes are observed to get more vortexes in impeller passage.Nevertheless, the hybrid meshes are found to have larger low-velocity area at outlet and more secondary vortexes at a specified location than structured meshes and unstructured meshes.展开更多
In wall-bounded turbulent flow calculations, the past focus has been directed to the modelling of the Reynolds-stress gradients. Not much attention has been paid to the effects of the numerical methods used to calcula...In wall-bounded turbulent flow calculations, the past focus has been directed to the modelling of the Reynolds-stress gradients. Not much attention has been paid to the effects of the numerical methods used to calculate these terms and the modelled equations. Discrepancies between model calculations and measurements are quite often attributed to incorrect modelling, while the suitability and accuracy of the numerical methods used are seldom scrutinized. Instead, alternate near-wall and Reynolds-stress models are proposed to remedy the incorrect turbulent flow calculations. On the other hand, if care is not taken in the numerical treatment of the Reynolds-stress gradient terms, physically unrealistic results and solution instability could occur. Previous studies by the author and his collaborators on the effects of numerical methods have shown that some of the more commonly used numerical methods could enhance numerical stability in the solution procedure but would introduce considerable inaccuracy to the results. The flow cases chosen to demonstrate these inaccuracies are a backstep flow and flow in a square duct, where flow complexities are present. The current investigation attempts to show that the above-mentioned effects of numerical methods could also occur in the calculation of a developing plane channel flow, where flow complexities are absent. In addition, this study shows that the results thus obtained lead to a predicted skin friction coefficient that is influenced more by the numerical method used than by the turbulence model invoked. Together, these results show that numerical treatment of the Reynolds-stress gradients in the equations play an important role, even for a developing plane channel flow.展开更多
This paper presents a numerical model study of the propagation of water waves using the parabolic approximation of the mild slope equation in the orthogonal coordinate system. Two types of coordinate systems are stud...This paper presents a numerical model study of the propagation of water waves using the parabolic approximation of the mild slope equation in the orthogonal coordinate system. Two types of coordinate systems are studied: (a) a general form of orthogonal coordinate system and (b) the conformal system, a special form of orthogonal coordinate system. Two typical examples, namely, expanded breakwaters and a circular channel, are studied to validate the model. First, the examples are studied by use of the general orthogonal coordinates. Then the same examples are computed by use of the conformal system. The computational results show that the conformal coordinate system generally gives better predictions than the general orthogonal system. A numerical technique for generating the conformal grid is combined with the numerical model to improve the practicability of the model. The comparison between the result from the numerical grid system and that from the analytical grid system shows that reliable computational results can be obtained by use of the numerical conformal grid system.展开更多
Random packed beds have more complex interior structure than structured beds and are widely used in industry and engineering. CFD simulation was carried out to investigate and analyze the local flow and heat transfer ...Random packed beds have more complex interior structure than structured beds and are widely used in industry and engineering. CFD simulation was carried out to investigate and analyze the local flow and heat transfer in a 120-sphere random packed bed. 3D Navier-Stokes equation was solved with a finite volume formulation based on the Chimera meshing technique. Investigation was focused on low Reynolds number flow (Re=4.6-56.2), which typically occurs in packed bed reactors in bio-chemical fields. Detailed temperature field information was obtained. Inhomogeneity of flow and heat transfer due to the non-uniform distribution of void fraction was discussed and analyzed.展开更多
The variational grid generation method is a powerful tool for generating structured convex grids on irregular simply connected domains whose boundary is a polygonal Jordan curve.Several examples that show the accuracy...The variational grid generation method is a powerful tool for generating structured convex grids on irregular simply connected domains whose boundary is a polygonal Jordan curve.Several examples that show the accuracy of a finite difference approximation to the solution of a Poisson equation using this kind of structured grids have been recently reported.In this paper,we compare the accuracy of the numerical solution calculated using those structured grids and finite differences against the solution obtained with Delaunay-like triangulations on irregular regions.展开更多
基金Projects(51109095,51179075,51309119)supported by the National Natural Science Foundation of ChinaProject(BE2012131)supported by Science and Technology Support Program of Jiangsu Province,China
文摘In order to evaluate the effects of mesh generation techniques and grid convergence on pump performance in centrifugal pump model, three widely used mesh styles including structured hexahedral, unstructured tetrahedral and hybrid prismatic/tetrahedral meshes were generated for a centrifugal pump model. And quantitative grid convergence was assessed based on a grid convergence index(GCI), which accounts for the degree of grid refinement. The structured, unstructured or hybrid meshes are found to have certain difference for velocity distributions in impeller with the change of grid cell number. And the simulation results have errors to different degrees compared with experimental data. The GCI-value for structured meshes calculated is lower than that for the unstructured and hybrid meshes. Meanwhile, the structured meshes are observed to get more vortexes in impeller passage.Nevertheless, the hybrid meshes are found to have larger low-velocity area at outlet and more secondary vortexes at a specified location than structured meshes and unstructured meshes.
文摘In wall-bounded turbulent flow calculations, the past focus has been directed to the modelling of the Reynolds-stress gradients. Not much attention has been paid to the effects of the numerical methods used to calculate these terms and the modelled equations. Discrepancies between model calculations and measurements are quite often attributed to incorrect modelling, while the suitability and accuracy of the numerical methods used are seldom scrutinized. Instead, alternate near-wall and Reynolds-stress models are proposed to remedy the incorrect turbulent flow calculations. On the other hand, if care is not taken in the numerical treatment of the Reynolds-stress gradient terms, physically unrealistic results and solution instability could occur. Previous studies by the author and his collaborators on the effects of numerical methods have shown that some of the more commonly used numerical methods could enhance numerical stability in the solution procedure but would introduce considerable inaccuracy to the results. The flow cases chosen to demonstrate these inaccuracies are a backstep flow and flow in a square duct, where flow complexities are present. The current investigation attempts to show that the above-mentioned effects of numerical methods could also occur in the calculation of a developing plane channel flow, where flow complexities are absent. In addition, this study shows that the results thus obtained lead to a predicted skin friction coefficient that is influenced more by the numerical method used than by the turbulence model invoked. Together, these results show that numerical treatment of the Reynolds-stress gradients in the equations play an important role, even for a developing plane channel flow.
文摘This paper presents a numerical model study of the propagation of water waves using the parabolic approximation of the mild slope equation in the orthogonal coordinate system. Two types of coordinate systems are studied: (a) a general form of orthogonal coordinate system and (b) the conformal system, a special form of orthogonal coordinate system. Two typical examples, namely, expanded breakwaters and a circular channel, are studied to validate the model. First, the examples are studied by use of the general orthogonal coordinates. Then the same examples are computed by use of the conformal system. The computational results show that the conformal coordinate system generally gives better predictions than the general orthogonal system. A numerical technique for generating the conformal grid is combined with the numerical model to improve the practicability of the model. The comparison between the result from the numerical grid system and that from the analytical grid system shows that reliable computational results can be obtained by use of the numerical conformal grid system.
基金supported financially by the Shanghai Pujiang Program (07pj14072)the Shanghai Leading Academic Disci-pline Project (J05051)
文摘Random packed beds have more complex interior structure than structured beds and are widely used in industry and engineering. CFD simulation was carried out to investigate and analyze the local flow and heat transfer in a 120-sphere random packed bed. 3D Navier-Stokes equation was solved with a finite volume formulation based on the Chimera meshing technique. Investigation was focused on low Reynolds number flow (Re=4.6-56.2), which typically occurs in packed bed reactors in bio-chemical fields. Detailed temperature field information was obtained. Inhomogeneity of flow and heat transfer due to the non-uniform distribution of void fraction was discussed and analyzed.
文摘The variational grid generation method is a powerful tool for generating structured convex grids on irregular simply connected domains whose boundary is a polygonal Jordan curve.Several examples that show the accuracy of a finite difference approximation to the solution of a Poisson equation using this kind of structured grids have been recently reported.In this paper,we compare the accuracy of the numerical solution calculated using those structured grids and finite differences against the solution obtained with Delaunay-like triangulations on irregular regions.