With the development of smart grid, operation and control of a power system can be realized through the power communication network, especially the power production and enterprise management business involve a large a...With the development of smart grid, operation and control of a power system can be realized through the power communication network, especially the power production and enterprise management business involve a large amount of sensitive information, and the requirements for data security and real-time transmission are gradually improved. In this paper, a new 9-dimensional(9D) complex chaotic system with quaternion is proposed for the encryption of smart grid data. Firstly, we present the mathematical model of the system, and analyze its attractors, bifurcation diagram, complexity,and 0–1 test. Secondly, the pseudo-random sequences are generated by the new chaotic system to encrypt power data.Finally, the proposed encryption algorithm is verified with power data and images in the smart grid, which can ensure the encryption security and real time. The verification results show that the proposed encryption scheme is technically feasible and available for power data and image encryption in smart grid.展开更多
False data injection attack(FDIA)can affect the state estimation of the power grid by tampering with the measured value of the power grid data,and then destroying the stable operation of the smart grid.Existing work u...False data injection attack(FDIA)can affect the state estimation of the power grid by tampering with the measured value of the power grid data,and then destroying the stable operation of the smart grid.Existing work usually trains a detection model by fusing the data-driven features from diverse power data streams.Data-driven features,however,cannot effectively capture the differences between noisy data and attack samples.As a result,slight noise disturbances in the power grid may cause a large number of false detections for FDIA attacks.To address this problem,this paper designs a deep collaborative self-attention network to achieve robust FDIA detection,in which the spatio-temporal features of cascaded FDIA attacks are fully integrated.Firstly,a high-order Chebyshev polynomials-based graph convolution module is designed to effectively aggregate the spatio information between grid nodes,and the spatial self-attention mechanism is involved to dynamically assign attention weights to each node,which guides the network to pay more attention to the node information that is conducive to FDIA detection.Furthermore,the bi-directional Long Short-Term Memory(LSTM)network is introduced to conduct time series modeling and long-term dependence analysis for power grid data and utilizes the temporal selfattention mechanism to describe the time correlation of data and assign different weights to different time steps.Our designed deep collaborative network can effectively mine subtle perturbations from spatiotemporal feature information,efficiently distinguish power grid noise from FDIA attacks,and adapt to diverse attack intensities.Extensive experiments demonstrate that our method can obtain an efficient detection performance over actual load data from New York Independent System Operator(NYISO)in IEEE 14,IEEE 39,and IEEE 118 bus systems,and outperforms state-of-the-art FDIA detection schemes in terms of detection accuracy and robustness.展开更多
The multi-sensor multi-target localization and data fusion problem is discussed, and a new data fusion method called joint probability density matrix (JPDM) has been proposed, which can associate with and fuse measu...The multi-sensor multi-target localization and data fusion problem is discussed, and a new data fusion method called joint probability density matrix (JPDM) has been proposed, which can associate with and fuse measurements from spatially distributed heterogeneous sensors to produce good estimates of the targets. Based on probabilistic grids representation, the uncertainty regions of all the measurements are numerically combined in a general framework. The NP-hard multi-sensor data fusion problem has been converted to a peak picking problem in the grids map. Unlike most of the existing data fusion methods, the JPDM method does not need association processing, and will not lead to combinatorial explosion. Its convergence to the CRB with a diminishing grid size has been proved. Simulation results are presented to illustrate the effectiveness of the proposed technique.展开更多
国家电网工程建设信息化管理模式主要以项目建设业务流为主线,当前BIM技术的引入给建设管理带来新的手段和方式。分析传统信息化管理模式的特点,遵循实用、无感、可用、智能、整体五个基本原则,重新设计电网工程在建筑信息模型(building...国家电网工程建设信息化管理模式主要以项目建设业务流为主线,当前BIM技术的引入给建设管理带来新的手段和方式。分析传统信息化管理模式的特点,遵循实用、无感、可用、智能、整体五个基本原则,重新设计电网工程在建筑信息模型(building information modeling,BIM)环境下数字化建设管理模式,提出“电网工作包”的新理念,设计新模式下数字化管理平台的整体框架,对比分析两种管理模式的应用差异并在某新区电网进行实现和应用,验证新管理模式能有效提升电网建设管理水平。展开更多
A real-time,long-term surface meteorological blended forcing dataset(SMBFD)has been developed based on station observations,satellite retrievals,and reanalysis products in China.The observations are collected at natio...A real-time,long-term surface meteorological blended forcing dataset(SMBFD)has been developed based on station observations,satellite retrievals,and reanalysis products in China.The observations are collected at national and regional automatic weather stations,satellite data are obtained from the Fengyun(FY)series satellites retrievals,and the reanalysis products are obtained from the ECMWF.The 90-m resolution digital terrain elevation data in China are obtained from the Shuttle Radar Topographic Mission(SRTM)for temperature and humidity elevation adjustment.The dataset includes 2-m air temperature and humidity,10-m zonal and meridional winds,downward shortwave radiation,surface pressure,and precipitation.The spatial resolution is 1 km,and the temporal resolution is 1 h.During the data processing procedure,various data fusion techniques including the space–time multiscale variational analysis,the discrete ordinates radiative transfer(DISORT)model,the hybrid radiation estimation model,and a terrain correction algorithm are employed.Dependent and independent evaluations of the dataset are performed against observations.The SMBFD dataset is also compared with similar datasets produced in other major meteorological operational centers in the world.The results are as follows.(1)All variables show reasonable geographic distribution features and realistic spatial and temporal variations.(2)Dependent and independent evaluations both indicate that the gridded SMBFD dataset is close to the observations,while the dependent evaluation yields better results than the independent evaluation.(3)Compared with similar datasets produced in other meteorological operational centers,the real-time and retrospective surface meteorological fusion data obviously have higher quality.The dataset introduced in the present study is in general stable and accurate,and can be applied in various practice such as meteorology,agriculture,ecology,environmental protection,etc.Meanwhile,this dataset has been used as the atmospheric forcing data to drive the operational High-resolution Land Data Assimilation System of China Meteorological Administration.The dataset with the network Common Data Form(NETCDF)can be decoded by various programming languages,and it is freely available to non-commercial users.展开更多
Compared with the traditional power grid,smart grid involves many advanced technologies and applications.However,due to the rapid development of various network technologies,smart grid is facing the challenges of bala...Compared with the traditional power grid,smart grid involves many advanced technologies and applications.However,due to the rapid development of various network technologies,smart grid is facing the challenges of balancing privacy,security,efficiency,and functionality.In the proposed scheme,we design a privacy protection scheme for outsourcing smart grid aided by fog computing,which supports fine-grained privacy-protected data aggregation based on user characteristics.The fog server matches the encrypted characteristics in the received message with the encrypted aggregation rules issued by the service provider.Therefore,the service provider can get more fine-grained analysis data based on user characteristics.Different from the existing outsourcing smart grid schemes,the proposed scheme can achieve real-time pricing on the premise of protecting user privacy and achieving system fault tolerance.Finally,experiment analyses demonstrate that the proposed scheme has less computation overhead and lower transmission delay than existing schemes.展开更多
基金Project supported by the International Collaborative Research Project of Qilu University of Technology (Grant No.QLUTGJHZ2018020)the Project of Youth Innovation and Technology Support Plan for Colleges and Universities in Shandong Province,China (Grant No.2021KJ025)the Major Scientific and Technological Innovation Projects of Shandong Province,China (Grant Nos.2019JZZY010731 and 2020CXGC010901)。
文摘With the development of smart grid, operation and control of a power system can be realized through the power communication network, especially the power production and enterprise management business involve a large amount of sensitive information, and the requirements for data security and real-time transmission are gradually improved. In this paper, a new 9-dimensional(9D) complex chaotic system with quaternion is proposed for the encryption of smart grid data. Firstly, we present the mathematical model of the system, and analyze its attractors, bifurcation diagram, complexity,and 0–1 test. Secondly, the pseudo-random sequences are generated by the new chaotic system to encrypt power data.Finally, the proposed encryption algorithm is verified with power data and images in the smart grid, which can ensure the encryption security and real time. The verification results show that the proposed encryption scheme is technically feasible and available for power data and image encryption in smart grid.
基金supported in part by the Research Fund of Guangxi Key Lab of Multi-Source Information Mining&Security(MIMS21-M-02).
文摘False data injection attack(FDIA)can affect the state estimation of the power grid by tampering with the measured value of the power grid data,and then destroying the stable operation of the smart grid.Existing work usually trains a detection model by fusing the data-driven features from diverse power data streams.Data-driven features,however,cannot effectively capture the differences between noisy data and attack samples.As a result,slight noise disturbances in the power grid may cause a large number of false detections for FDIA attacks.To address this problem,this paper designs a deep collaborative self-attention network to achieve robust FDIA detection,in which the spatio-temporal features of cascaded FDIA attacks are fully integrated.Firstly,a high-order Chebyshev polynomials-based graph convolution module is designed to effectively aggregate the spatio information between grid nodes,and the spatial self-attention mechanism is involved to dynamically assign attention weights to each node,which guides the network to pay more attention to the node information that is conducive to FDIA detection.Furthermore,the bi-directional Long Short-Term Memory(LSTM)network is introduced to conduct time series modeling and long-term dependence analysis for power grid data and utilizes the temporal selfattention mechanism to describe the time correlation of data and assign different weights to different time steps.Our designed deep collaborative network can effectively mine subtle perturbations from spatiotemporal feature information,efficiently distinguish power grid noise from FDIA attacks,and adapt to diverse attack intensities.Extensive experiments demonstrate that our method can obtain an efficient detection performance over actual load data from New York Independent System Operator(NYISO)in IEEE 14,IEEE 39,and IEEE 118 bus systems,and outperforms state-of-the-art FDIA detection schemes in terms of detection accuracy and robustness.
基金Supported by the National Natural Science Foundation of China (No. 60736006 and 60875019)
文摘The multi-sensor multi-target localization and data fusion problem is discussed, and a new data fusion method called joint probability density matrix (JPDM) has been proposed, which can associate with and fuse measurements from spatially distributed heterogeneous sensors to produce good estimates of the targets. Based on probabilistic grids representation, the uncertainty regions of all the measurements are numerically combined in a general framework. The NP-hard multi-sensor data fusion problem has been converted to a peak picking problem in the grids map. Unlike most of the existing data fusion methods, the JPDM method does not need association processing, and will not lead to combinatorial explosion. Its convergence to the CRB with a diminishing grid size has been proved. Simulation results are presented to illustrate the effectiveness of the proposed technique.
文摘国家电网工程建设信息化管理模式主要以项目建设业务流为主线,当前BIM技术的引入给建设管理带来新的手段和方式。分析传统信息化管理模式的特点,遵循实用、无感、可用、智能、整体五个基本原则,重新设计电网工程在建筑信息模型(building information modeling,BIM)环境下数字化建设管理模式,提出“电网工作包”的新理念,设计新模式下数字化管理平台的整体框架,对比分析两种管理模式的应用差异并在某新区电网进行实现和应用,验证新管理模式能有效提升电网建设管理水平。
基金Supported by the National Key Research and Development Program of China(2018YFC1506601)National Natural Science Foundation of China(91437220)China Meteorological Administration Special Public Welfare Research Fund(GYHY201306045 and GYHY201506002).
文摘A real-time,long-term surface meteorological blended forcing dataset(SMBFD)has been developed based on station observations,satellite retrievals,and reanalysis products in China.The observations are collected at national and regional automatic weather stations,satellite data are obtained from the Fengyun(FY)series satellites retrievals,and the reanalysis products are obtained from the ECMWF.The 90-m resolution digital terrain elevation data in China are obtained from the Shuttle Radar Topographic Mission(SRTM)for temperature and humidity elevation adjustment.The dataset includes 2-m air temperature and humidity,10-m zonal and meridional winds,downward shortwave radiation,surface pressure,and precipitation.The spatial resolution is 1 km,and the temporal resolution is 1 h.During the data processing procedure,various data fusion techniques including the space–time multiscale variational analysis,the discrete ordinates radiative transfer(DISORT)model,the hybrid radiation estimation model,and a terrain correction algorithm are employed.Dependent and independent evaluations of the dataset are performed against observations.The SMBFD dataset is also compared with similar datasets produced in other major meteorological operational centers in the world.The results are as follows.(1)All variables show reasonable geographic distribution features and realistic spatial and temporal variations.(2)Dependent and independent evaluations both indicate that the gridded SMBFD dataset is close to the observations,while the dependent evaluation yields better results than the independent evaluation.(3)Compared with similar datasets produced in other meteorological operational centers,the real-time and retrospective surface meteorological fusion data obviously have higher quality.The dataset introduced in the present study is in general stable and accurate,and can be applied in various practice such as meteorology,agriculture,ecology,environmental protection,etc.Meanwhile,this dataset has been used as the atmospheric forcing data to drive the operational High-resolution Land Data Assimilation System of China Meteorological Administration.The dataset with the network Common Data Form(NETCDF)can be decoded by various programming languages,and it is freely available to non-commercial users.
基金This work was supported in part by the National Natural Science Foundation of China(Grant Nos.62125205,62072361 and 61872449)。
文摘Compared with the traditional power grid,smart grid involves many advanced technologies and applications.However,due to the rapid development of various network technologies,smart grid is facing the challenges of balancing privacy,security,efficiency,and functionality.In the proposed scheme,we design a privacy protection scheme for outsourcing smart grid aided by fog computing,which supports fine-grained privacy-protected data aggregation based on user characteristics.The fog server matches the encrypted characteristics in the received message with the encrypted aggregation rules issued by the service provider.Therefore,the service provider can get more fine-grained analysis data based on user characteristics.Different from the existing outsourcing smart grid schemes,the proposed scheme can achieve real-time pricing on the premise of protecting user privacy and achieving system fault tolerance.Finally,experiment analyses demonstrate that the proposed scheme has less computation overhead and lower transmission delay than existing schemes.