Reaction bonded SiC(RBSiC) is attractive for optical application because of its favorable properties and low fabrication cost. However, the difficultness and cost involved in RBSiC grinding limit its application. Th...Reaction bonded SiC(RBSiC) is attractive for optical application because of its favorable properties and low fabrication cost. However, the difficultness and cost involved in RBSiC grinding limit its application. The investigation on high efficient and low-cost machining with good grinding quality is desired. Generally, high efficient machining for RBSiC is realized by using coarse grain size grinding wheels, but serious grinding damage is inevitable. In this paper, monolayer nickel electroplated coarse grain size diamond grinding wheels with grain sizes of 46 μm, 91 μm, and 151 μm were applied to the grinding of RBSiC. An electrolytic in-process dressing(ELID) assisted conditioning technique was first developed by using cup shape copper bonded conditioning wheels with grain sizes of 15 μm and 91 μm to generate the conditioned coarse grain size wheels with minimized wheel run-out error within 2 μm, constant wheel peripheral envelop as well as top-flattened diamond grains. Then, the grinding experiments on RBSiC were carried out to investigate the grinding performance and material removal mechanism. The experimental results indicate that the developed conditioning technique is applicable and feasible to condition the coarse grain size diamond wheels under optimal conditioning parameters, and the material removal mechanism involved in RBSiC grinding is the combination of brittle fracture and ductile deformation to generate smooth ground surface. This research is significant for the high efficient and low-cost precision grinding of RBSiC with good ground surface quality.展开更多
The reasons for bringing surface accuracy error in ultra-precision grinding ceramic ball joint were analyzed,and the influences wheel position error and shaft run-out error on the ball joint surface accuracy were disc...The reasons for bringing surface accuracy error in ultra-precision grinding ceramic ball joint were analyzed,and the influences wheel position error and shaft run-out error on the ball joint surface accuracy were discussed.Through establishing three-dimensional grinding model,the mathematical relationship between the position error and surface accuracy was derived,and the distance from any point on spherical surface to the ideal center was calculated when position error existed,and a precise surface shape was got,and theoretical support was provided to improve the surface accuracy during the grinding process.Using self-developed ultraprecision grinding machine to do the ceramic ball grinding experiment,the surface accuracy PV value of ceramic spherical joint is 4.8μm.展开更多
Optical glass elements with the ellipsoidal surface are used in many critical aerospace instruments,such as satellites,telescope and cameras.Their optical performance is mainly affected by profile accuracy and surface...Optical glass elements with the ellipsoidal surface are used in many critical aerospace instruments,such as satellites,telescope and cameras.Their optical performance is mainly affected by profile accuracy and surface quality.In this paper,a rectangular ellipsoid surface is precisely ground on a BK7 optical glass blank by grating scanning grinding path with a three-axis CNC precision surface grinder.A profile error compensation procedure for ellipsoidal grinding is proposed based on the error analysis about the primary error sources in the XY and YZ projection planes during the grinding process.The mathematical prediction models of the wheel arc profile error,the measurement and wear error of the grinding wheel radiuses are established.By applying the proposed error compensation procedure,the profile accuracy of the ellipsoidal surface was improved from 4 lm to 2 lm in the XY plane,and improved from 15 lm to 5 lm in the YZ plane.展开更多
Grinding technology is an essential manufacturing operation,in particular,when a component with a superfinishing and an ultra-resolution is yearned.Meeting the required strict quality checklist with maintaining a high...Grinding technology is an essential manufacturing operation,in particular,when a component with a superfinishing and an ultra-resolution is yearned.Meeting the required strict quality checklist with maintaining a high level of productivity and sustainability is a substantive issue.The recent paper outlines the lubrication and cooling technologies and mediums that are used for grinding.Furthermore,it provides a basis for a critical assessment of the different lubrication/cooling techniques in terms of machining outputs,environmental impact,hygiene effect,etc.Meanwhile,the paper put light on the sustainability of different cooling/lubrication strategies.The sustainability of machining aims to get the product with the best accuracy and surface quality,minimum energy consumption,low environmental impact,reasonable economy,and minimum effect on worker’s health.The paper revealed that despite some cooling/lubrication mediums like mineral oils and semisynthetic,afford sufficient lubrication or cooling,they have a significant negative impact on the environment and public health.On the other hand,emulsions can overcome environmental problems but the economy and the energy consumption during grinding are still a matter of concern.Biodegradable and vegetable oils are considered eco-friendly oils,but they suffer from a lack of thermal stability which affects their ability of efficiently cooling.Using the cooling medium with the lowest amount can achieve the goal of the economy but it may be reflected negatively on the machinability.Furthermore,cryogenic lubrication doesn’t provide sufficient lubrication to reduce friction and hence energy consumption.The research described in the paper is such a comprehensive compilation of knowledge regarding the machinability and machining performance under different cooling and lubrication systems that it will aid the next generation of scientists in identifying current advancements as well as potential future directions of research on ecological aspects of machining for sustainability.展开更多
The smoothed-particle hydrodynamics(SPH)method was introduced to simulate the quartz glass grinding process with a single grain under micrp-nano scale.To investigate the mechanism of brittle-ductile transition,such fa...The smoothed-particle hydrodynamics(SPH)method was introduced to simulate the quartz glass grinding process with a single grain under micrp-nano scale.To investigate the mechanism of brittle-ductile transition,such factors as the machin-ing depth,grinding force,maximum equivalent stress,and residual stress were analyzed.The simulation results indicate that quartz glass can be machined in a ductile mode under a certain condition.In this paper,the occurrence and propaga-tion of cracks in quartz glass at different grinding depths(0.1-1μm)are observed,and the critical depth of brittle-ductile transformation is 0.36 pum.At different grinding depths,the grinding force ratio is greater than 1.When the cutting depth is 0.4 um,the crack propagation depth is about 1.2μm,which provides a basis for the prediction of subsurface damage depth.In addition,the correctness of the simulation result was verified by carrying out scratch experiments of varying cutting depth on optical quartz glass.展开更多
基金supported by the Alexander von Humboldt (AvH) Stiftung/Foundation of Germany,National Key Project of China (Grant No. 09ZX04001-151)the "111" Project of China (Grant No. B07018)
文摘Reaction bonded SiC(RBSiC) is attractive for optical application because of its favorable properties and low fabrication cost. However, the difficultness and cost involved in RBSiC grinding limit its application. The investigation on high efficient and low-cost machining with good grinding quality is desired. Generally, high efficient machining for RBSiC is realized by using coarse grain size grinding wheels, but serious grinding damage is inevitable. In this paper, monolayer nickel electroplated coarse grain size diamond grinding wheels with grain sizes of 46 μm, 91 μm, and 151 μm were applied to the grinding of RBSiC. An electrolytic in-process dressing(ELID) assisted conditioning technique was first developed by using cup shape copper bonded conditioning wheels with grain sizes of 15 μm and 91 μm to generate the conditioned coarse grain size wheels with minimized wheel run-out error within 2 μm, constant wheel peripheral envelop as well as top-flattened diamond grains. Then, the grinding experiments on RBSiC were carried out to investigate the grinding performance and material removal mechanism. The experimental results indicate that the developed conditioning technique is applicable and feasible to condition the coarse grain size diamond wheels under optimal conditioning parameters, and the material removal mechanism involved in RBSiC grinding is the combination of brittle fracture and ductile deformation to generate smooth ground surface. This research is significant for the high efficient and low-cost precision grinding of RBSiC with good ground surface quality.
基金Sponsored by the National Defense Basic Research Program(Grant No.A0920110016)
文摘The reasons for bringing surface accuracy error in ultra-precision grinding ceramic ball joint were analyzed,and the influences wheel position error and shaft run-out error on the ball joint surface accuracy were discussed.Through establishing three-dimensional grinding model,the mathematical relationship between the position error and surface accuracy was derived,and the distance from any point on spherical surface to the ideal center was calculated when position error existed,and a precise surface shape was got,and theoretical support was provided to improve the surface accuracy during the grinding process.Using self-developed ultraprecision grinding machine to do the ceramic ball grinding experiment,the surface accuracy PV value of ceramic spherical joint is 4.8μm.
基金National Natural Science Foundation of China(no.51875321)Shandong Provincial Natural Science Foundation(no.ZR2018MEE019)Major Basic Research of Shandong Provincial Natural Science Foundation(no.ZR2018ZB0521,ZR2018ZA0401)。
文摘Optical glass elements with the ellipsoidal surface are used in many critical aerospace instruments,such as satellites,telescope and cameras.Their optical performance is mainly affected by profile accuracy and surface quality.In this paper,a rectangular ellipsoid surface is precisely ground on a BK7 optical glass blank by grating scanning grinding path with a three-axis CNC precision surface grinder.A profile error compensation procedure for ellipsoidal grinding is proposed based on the error analysis about the primary error sources in the XY and YZ projection planes during the grinding process.The mathematical prediction models of the wheel arc profile error,the measurement and wear error of the grinding wheel radiuses are established.By applying the proposed error compensation procedure,the profile accuracy of the ellipsoidal surface was improved from 4 lm to 2 lm in the XY plane,and improved from 15 lm to 5 lm in the YZ plane.
基金funded by the Natural Science Foundation of China(Nos.52005174,52275421,51875192)Hunan Provincial Science Fund for Distinguished Young Scholars(No.2022JJ10010)+2 种基金Key Research and Development Program of Hunan Province(No.2022WK2003),the Natural Science Foundation of Hunan Province(Nos.2021JJ40064,2020JJ4193)the Natural Science Foundation of Changsha(No.kq2014048)the Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDA25020317).The authors acknowledge the financial support.
文摘Grinding technology is an essential manufacturing operation,in particular,when a component with a superfinishing and an ultra-resolution is yearned.Meeting the required strict quality checklist with maintaining a high level of productivity and sustainability is a substantive issue.The recent paper outlines the lubrication and cooling technologies and mediums that are used for grinding.Furthermore,it provides a basis for a critical assessment of the different lubrication/cooling techniques in terms of machining outputs,environmental impact,hygiene effect,etc.Meanwhile,the paper put light on the sustainability of different cooling/lubrication strategies.The sustainability of machining aims to get the product with the best accuracy and surface quality,minimum energy consumption,low environmental impact,reasonable economy,and minimum effect on worker’s health.The paper revealed that despite some cooling/lubrication mediums like mineral oils and semisynthetic,afford sufficient lubrication or cooling,they have a significant negative impact on the environment and public health.On the other hand,emulsions can overcome environmental problems but the economy and the energy consumption during grinding are still a matter of concern.Biodegradable and vegetable oils are considered eco-friendly oils,but they suffer from a lack of thermal stability which affects their ability of efficiently cooling.Using the cooling medium with the lowest amount can achieve the goal of the economy but it may be reflected negatively on the machinability.Furthermore,cryogenic lubrication doesn’t provide sufficient lubrication to reduce friction and hence energy consumption.The research described in the paper is such a comprehensive compilation of knowledge regarding the machinability and machining performance under different cooling and lubrication systems that it will aid the next generation of scientists in identifying current advancements as well as potential future directions of research on ecological aspects of machining for sustainability.
基金The authors would like to acknowledge the finan cial support from the National Natural Science Foundation of China(General Program)(No.51575083)Science Fund for Creative Research Groups(No.51621064).
文摘The smoothed-particle hydrodynamics(SPH)method was introduced to simulate the quartz glass grinding process with a single grain under micrp-nano scale.To investigate the mechanism of brittle-ductile transition,such factors as the machin-ing depth,grinding force,maximum equivalent stress,and residual stress were analyzed.The simulation results indicate that quartz glass can be machined in a ductile mode under a certain condition.In this paper,the occurrence and propaga-tion of cracks in quartz glass at different grinding depths(0.1-1μm)are observed,and the critical depth of brittle-ductile transformation is 0.36 pum.At different grinding depths,the grinding force ratio is greater than 1.When the cutting depth is 0.4 um,the crack propagation depth is about 1.2μm,which provides a basis for the prediction of subsurface damage depth.In addition,the correctness of the simulation result was verified by carrying out scratch experiments of varying cutting depth on optical quartz glass.