The surface quality of chamfer milling of stainless steel is closed related to the products of 3 C(Computer, Communication and Consumer electronics), where a cutter is a major part to achieve that. Targeting a high-qu...The surface quality of chamfer milling of stainless steel is closed related to the products of 3 C(Computer, Communication and Consumer electronics), where a cutter is a major part to achieve that. Targeting a high-quality cutter,an experimental evaluation is carried out on the influence of grinding texture of cutter flank face on surface quality.The mathematic models of chamfer cutter are established, and they are validated by a numerical simulation. Also the grinding data are generated by the models and tested by a grinding simulation for safety reasons. Then, a set of chamfer cutting tools are machined in a five-axis CNC grinding machine, and consist of five angles between the cutting edge and the grinding texture on the 1 st flank faces, i.e., 0°, 15°, 30°, 45° and 60°. Furthermore, the machined cutting tools are tested in a series of milling experiments of chamfer hole of stainless steel, where cutting forces and surface morphologies are measured and observed. The results show that the best state of both surface quality and cutting force is archived by the tool with 45° grinding texture, which can provide a support for manufacturing of cutting tool used in chamfer milling.展开更多
In Germany, diamond grinding is frequently used to improve the evenness and skid resistance of concrete pavement surfaces. Since diamond grinding has been observed to affect tyre/pavement noise emission favourably, th...In Germany, diamond grinding is frequently used to improve the evenness and skid resistance of concrete pavement surfaces. Since diamond grinding has been observed to affect tyre/pavement noise emission favourably, the relationship among surface texture, concrete composition and noise emission of concrete pavement surfaces has been sys- tematically investigated. The simulation program SPERoN was used in a parameter study to investigate the main factors which affect noise emission. Based on the results of the simulations, textured concrete surfaces were produced by using a laboratory grinding machine. As well as the composition of the concrete, the thickness and spacing of the diamond blades were varied. The ability of the textured surfaces to reduce noise emission was assessed from the texture characteristics and air flow resistance of textured surfaces measured in the laboratory. It was found that concrete composition and, in particular, the spacing of the blades affected the reduction in noise emission considerably. The noise emission behaviour of numerous road sections was also considered in field investigations. The pavement surfaces had been textured by diamond grinding during the last years or decades. The results show that diamond grinding is able to provide good, durable noise- reducing properties. Several new pavement sections were investigated using thicknesses and spacings of the blades similar to those used in the laboratory to optimize noise emission reduction. It is concluded that diamond grinding is a good alternative to exposed aggregate concrete for the production of low-noise pavement surfaces.展开更多
基金Supported by Heilongjiang Provincial Natural Science Foundation of China(Grant No.QC2016070)
文摘The surface quality of chamfer milling of stainless steel is closed related to the products of 3 C(Computer, Communication and Consumer electronics), where a cutter is a major part to achieve that. Targeting a high-quality cutter,an experimental evaluation is carried out on the influence of grinding texture of cutter flank face on surface quality.The mathematic models of chamfer cutter are established, and they are validated by a numerical simulation. Also the grinding data are generated by the models and tested by a grinding simulation for safety reasons. Then, a set of chamfer cutting tools are machined in a five-axis CNC grinding machine, and consist of five angles between the cutting edge and the grinding texture on the 1 st flank faces, i.e., 0°, 15°, 30°, 45° and 60°. Furthermore, the machined cutting tools are tested in a series of milling experiments of chamfer hole of stainless steel, where cutting forces and surface morphologies are measured and observed. The results show that the best state of both surface quality and cutting force is archived by the tool with 45° grinding texture, which can provide a support for manufacturing of cutting tool used in chamfer milling.
文摘In Germany, diamond grinding is frequently used to improve the evenness and skid resistance of concrete pavement surfaces. Since diamond grinding has been observed to affect tyre/pavement noise emission favourably, the relationship among surface texture, concrete composition and noise emission of concrete pavement surfaces has been sys- tematically investigated. The simulation program SPERoN was used in a parameter study to investigate the main factors which affect noise emission. Based on the results of the simulations, textured concrete surfaces were produced by using a laboratory grinding machine. As well as the composition of the concrete, the thickness and spacing of the diamond blades were varied. The ability of the textured surfaces to reduce noise emission was assessed from the texture characteristics and air flow resistance of textured surfaces measured in the laboratory. It was found that concrete composition and, in particular, the spacing of the blades affected the reduction in noise emission considerably. The noise emission behaviour of numerous road sections was also considered in field investigations. The pavement surfaces had been textured by diamond grinding during the last years or decades. The results show that diamond grinding is able to provide good, durable noise- reducing properties. Several new pavement sections were investigated using thicknesses and spacings of the blades similar to those used in the laboratory to optimize noise emission reduction. It is concluded that diamond grinding is a good alternative to exposed aggregate concrete for the production of low-noise pavement surfaces.