Soft pneumatic robotic grippers have found extensive applica-tions across various engineering domains,which prompts active research due to their splendid compliance,high flex-ibility,and safe human-robot interaction o...Soft pneumatic robotic grippers have found extensive applica-tions across various engineering domains,which prompts active research due to their splendid compliance,high flex-ibility,and safe human-robot interaction over conventional stiff counterparts.Previously simplified rod-based models prin-cipally focused on clarifying overall large deformation and bending postures of soft grippers from static or quasi-static perspectives,whereas it is challenging to elaborate grasping characteristics of soft grippers without considering contact interaction and nonlinear large deformation behaviors.To address this,based on absolute nodal coordinate formulation(ANCF),comprehensively allowing for structural complexity,geometric,material and boundary nonlinearities,and incorpor-ating Coulomb’friction law with a multiple-point contact method,we put forward an effective nonlinear dynamic mod-eling approach for exploring grasping capability of soft grip-per.Moreover,we solved the established dynamic equations using Generalized-αscheme,and conducted thorough numer-ical simulation analysis on a three-jaw soft pneumatic gripper(SPG)in terms of grasping configurations,displacements and contact forces.The proposed dynamic approach can accurately both describe complicated deformed configurations along with stress distribution and provide a feasible solution to simulate grasping targets,whose effectiveness and precision were analyzed theoretically and verified experimentally,which may shed new light on devising and optimizing other multi-functional SPGs.展开更多
To improve the grasping power of soft robots,inspired by the scene of intertwined and interdependent vine branches safely clinging to habitats in a violent storm and the phenomenon of large grasping force after being ...To improve the grasping power of soft robots,inspired by the scene of intertwined and interdependent vine branches safely clinging to habitats in a violent storm and the phenomenon of large grasping force after being entangled by aquatic plants,this paper proposes a soft robotic gripper with multi-stem twining.The proposed robotic gripper can realize a larger contact area of surrounding or containing object and more layers of a twining object than the current twining gripping methods.It not only retains the adaptive advantages of twining grasping but also improves the grasping force.First,based on the mechanical characteristics of the multi-stem twining of the gripper,the twining grasping model is developed.Then,the force on the fiber is deduced by using the twining theory,and the axial force of the gripper is analyzed based on the equivalent model of the rubber ring.Finally,the torsion experiments of fibers and the grasping experiments of the gripper are designed and conducted.The torsion experiment of fibers verifies the influence of a different number of fiber ropes and fiber torque on the grasping force,and the grasping experiment reflects the large load of the gripper and the high adaptability and practicability under different tasks.展开更多
Inspired by the morphology of human fingers,this paper proposes an underactuated rigid-soft coupled robotic gripper whose finger is designed as the combination of a rigid skeleton and a soft tissue.Different from the ...Inspired by the morphology of human fingers,this paper proposes an underactuated rigid-soft coupled robotic gripper whose finger is designed as the combination of a rigid skeleton and a soft tissue.Different from the current grippers who have multi-point contact or line contact with the target objects,the proposed robotic gripper enables surface contact and leads to flexible grasping and robust holding.The actuated mechanism,which is the palm of proposed gripper,is optimized for excellent operability based on a mathematical model.Soft material selection and rigid skeleton structure of fingers are then analyzed through a series of dynamic simulations by RecurDyn and Adams.After above design process including topology analysis,actuated mechanism optimization,soft material selection and rigid skeleton analysis,the rigid-soft coupled robotic gripper is fabricated via 3D printing.Finally,the grasping and holding capabilities are validated by experiments testing the stiffness of a single finger and the impact resistance of the gripper.Experimental results show that the proposed rigid-soft coupled robotic gripper can adapt to objects with different properties(shape,size,weight and softness)and hold them steadily.It confirms the feasibility of the design procedure,as well as the compliant and dexterous grasping capabilities of proposed rigid-soft coupled gripper.展开更多
基金supported by Natural Science Foundation of Zhejiang Province (Grant No.LQ22A020003)National Natural Science Foundation of China (Grant No.52075499)for which all authors are grateful.
文摘Soft pneumatic robotic grippers have found extensive applica-tions across various engineering domains,which prompts active research due to their splendid compliance,high flex-ibility,and safe human-robot interaction over conventional stiff counterparts.Previously simplified rod-based models prin-cipally focused on clarifying overall large deformation and bending postures of soft grippers from static or quasi-static perspectives,whereas it is challenging to elaborate grasping characteristics of soft grippers without considering contact interaction and nonlinear large deformation behaviors.To address this,based on absolute nodal coordinate formulation(ANCF),comprehensively allowing for structural complexity,geometric,material and boundary nonlinearities,and incorpor-ating Coulomb’friction law with a multiple-point contact method,we put forward an effective nonlinear dynamic mod-eling approach for exploring grasping capability of soft grip-per.Moreover,we solved the established dynamic equations using Generalized-αscheme,and conducted thorough numer-ical simulation analysis on a three-jaw soft pneumatic gripper(SPG)in terms of grasping configurations,displacements and contact forces.The proposed dynamic approach can accurately both describe complicated deformed configurations along with stress distribution and provide a feasible solution to simulate grasping targets,whose effectiveness and precision were analyzed theoretically and verified experimentally,which may shed new light on devising and optimizing other multi-functional SPGs.
基金supported in part by Natural Science Foundation Key projects of Hebei Province under Grant E2021203125in part by the Joint fund of the Science&Technology Department of Liaoning Province and State Key Laboratory of Robotics,China under Grant 2021KF2206+1 种基金in part by Local science and technology development fund projects guided by the central government under Grant 206Z1807Gin part by Hebei Province Graduate Innovation Funding Project under Grant CXZZBS2022127.
文摘To improve the grasping power of soft robots,inspired by the scene of intertwined and interdependent vine branches safely clinging to habitats in a violent storm and the phenomenon of large grasping force after being entangled by aquatic plants,this paper proposes a soft robotic gripper with multi-stem twining.The proposed robotic gripper can realize a larger contact area of surrounding or containing object and more layers of a twining object than the current twining gripping methods.It not only retains the adaptive advantages of twining grasping but also improves the grasping force.First,based on the mechanical characteristics of the multi-stem twining of the gripper,the twining grasping model is developed.Then,the force on the fiber is deduced by using the twining theory,and the axial force of the gripper is analyzed based on the equivalent model of the rubber ring.Finally,the torsion experiments of fibers and the grasping experiments of the gripper are designed and conducted.The torsion experiment of fibers verifies the influence of a different number of fiber ropes and fiber torque on the grasping force,and the grasping experiment reflects the large load of the gripper and the high adaptability and practicability under different tasks.
基金This was supported in part by the National Natural Science Foundation of China under Grant 52275027,52275028 and 52205028in part by the Tianjin Science and Technology Planning Project under Grant 20201193.
文摘Inspired by the morphology of human fingers,this paper proposes an underactuated rigid-soft coupled robotic gripper whose finger is designed as the combination of a rigid skeleton and a soft tissue.Different from the current grippers who have multi-point contact or line contact with the target objects,the proposed robotic gripper enables surface contact and leads to flexible grasping and robust holding.The actuated mechanism,which is the palm of proposed gripper,is optimized for excellent operability based on a mathematical model.Soft material selection and rigid skeleton structure of fingers are then analyzed through a series of dynamic simulations by RecurDyn and Adams.After above design process including topology analysis,actuated mechanism optimization,soft material selection and rigid skeleton analysis,the rigid-soft coupled robotic gripper is fabricated via 3D printing.Finally,the grasping and holding capabilities are validated by experiments testing the stiffness of a single finger and the impact resistance of the gripper.Experimental results show that the proposed rigid-soft coupled robotic gripper can adapt to objects with different properties(shape,size,weight and softness)and hold them steadily.It confirms the feasibility of the design procedure,as well as the compliant and dexterous grasping capabilities of proposed rigid-soft coupled gripper.