It is well known that femtosecond laser pulses can easily spontaneously induce deep-subwavelength periodic surface structures on transparent dielectrics but not on non-transparent semiconductors.Nevertheless,in this s...It is well known that femtosecond laser pulses can easily spontaneously induce deep-subwavelength periodic surface structures on transparent dielectrics but not on non-transparent semiconductors.Nevertheless,in this study,we demonstrate that using high-numerical-aperture 800 nm femtosecond laser direct writing with controlled pulse energy and scanning speed in the near-damage-threshold regime,polarization-dependent deep-subwavelength single grooves with linewidths of~180 nm can be controllably prepared on Si.Generally,the single-groove linewidth increases slightly with increase in the pulse energy and decrease in the scanning speed,whereas the single-groove depth significantly increases from~300 nm to~600 nm with decrease in the scanning speed,or even to over 1μm with multi-processing,indicating the characteristics of transverse clamping and longitudinal growth of such deep-subwavelength single grooves.Energy dispersive spectroscopy composition analysis of the near-groove region confirms that single-groove formation tends to be an ultrafast,non-thermal ablation process,and the oxidized deposits near the grooves are easy to clean up.Furthermore,the results,showing both the strong dependence of groove orientation on laser polarization and the occurrence of double-groove structures due to the interference of pre-formed orthogonal grooves,indicate that the extraordinary field enhancement of strong polarization sensitivity in the deep-subwavelength groove plays an important role in single-groove growth with high stability and collimation.展开更多
The dynamics model of a 2-degree-of-freedom deep groove ball bearing is established by incorporating the raceway surface waviness model comprising multiple sinusoidal functions superposition.The model is solved using ...The dynamics model of a 2-degree-of-freedom deep groove ball bearing is established by incorporating the raceway surface waviness model comprising multiple sinusoidal functions superposition.The model is solved using the fourth-order Runge-Kutta method to obtain the vibration characteristics including displacement,velocity,acceleration,and frequency of the bearing.Validation of the model is accomplished through comparison with theoretical vibration frequencies.The influence of the amplitude of waviness of the inner and outer ring raceway surfaces of deep groove ball bearings on the vibration displacement,peak-to-peak vibration displacement and root-mean-square vibration acceleration is analyzed,and the results show that as the amplitude of the inner and outer ring raceway surfaces waviness increases,all the vibration characteristic indexes increase,indicating that the vibration amplitude of the bearings as well as the energy of the waviness-induced shock waveforms increase with the increase of the amplitude of the waviness.展开更多
Objective: To explore the application value of disposable grooved negative pressure drainage tubes in rib fracture incision and internal fixation. Methods: Seventy-five patients admitted to our Department of Trauma Su...Objective: To explore the application value of disposable grooved negative pressure drainage tubes in rib fracture incision and internal fixation. Methods: Seventy-five patients admitted to our Department of Trauma Surgery from June 2022 to April 2024 who underwent rib fracture osteotomy and internal fixation were selected. According to the types of drainage tubes left in the patients after the operation, they were divided into the observation group (35 cases who were left with disposable grooved negative pressure drainage tubes) and the control group (40 cases who were left with closed silicone thoracic drainage tubes). Comparison of chest drainage, pain, postoperative complications, secondary chest penetration rate, drain placement time, hospitalization time, and treatment costs were compared between the two groups. Results: The total postoperative chest drainage volume of the observation group was less than that of the control group (P < 0.05);the degree of pain, the incidence of postoperative complications, and the rate of secondary chest puncture in the observation group were lower than that of the control group three days after the operation (P < 0.05);and the time of drain placement in the observation group was shorter than that of the control group (P < 0.05). Conclusion: The application of disposable grooved negative pressure drainage tubes in rib fracture incision and internal fixation can significantly improve patients’ postoperative pain and discomfort, reduce complications, lower the rate of secondary chest penetration, promote patients’ postoperative recovery, decrease the amount of postoperative chest drainage, and shorten the time of drain placement, which is worthy of clinical promotion and application.展开更多
BACKGROUND Groove pancreatitis(GP)is a rare condition affecting the pancreatic groove region within the dorsal-cranial part of the pancreatic head,duodenum,and common bile duct.As a rare form of chronic pancreatitis,G...BACKGROUND Groove pancreatitis(GP)is a rare condition affecting the pancreatic groove region within the dorsal-cranial part of the pancreatic head,duodenum,and common bile duct.As a rare form of chronic pancreatitis,GP poses a diagnostic and therapeutic challenge for clinicians.GP is frequently misdiagnosed or not considered;thus,the diagnosis is often delayed by weeks or months.The treatment of GP is complicated and often requires surgical intervention,especially pancreatoduodenectomy.CASE SUMMARY A 66-year-old man with a history of long-term drinking was admitted to the gastroenterology department of our hospital,complaining of vomiting and acid reflux.Upper gastrointestinal endoscopy showed luminal stenosis in the descending part of the duodenum.Abdominal computed tomography showed slight exudation in the descending and horizontal parts of the duodenum with broadening of the groove region,indicating local pancreatitis.The symptoms of intestinal obstruction were not relieved with conservative therapy,and insertion of an enteral feeding tube was not successful.Exploratory laparoscopy was performed and revealed a hard mass with scarring in the horizontal part of the duodenum and stenosis.Intraoperative frozen section analysis showed no evidence of malignancy,and side-to-side duodenojejunostomy was performed.Routine pathologic examination showed massive proliferation of fibrous tissue,hyaline change,and the proliferation of spindle cells.Based on the radiologic and pathologic characteristics,a diagnosis of GP was made.The patient presented with anastomotic obstruction postoperatively and took a long time to recover,requiring supportive therapy.CONCLUSION GP often involves the descending and horizontal parts of the duodenum and causes duodenal stenosis,impaired duodenal motility,and gastric emptying due to fibrosis.展开更多
Mode matching method is used to analyze the scattering characteristics of thecircular-to-circular groove waveguide junction. Matching the electric fields and magnetic fields atthe boundary of the junction, and multipl...Mode matching method is used to analyze the scattering characteristics of thecircular-to-circular groove waveguide junction. Matching the electric fields and magnetic fields atthe boundary of the junction, and multiplying the mode functions of the circular waveguide andcircular groove waveguide on both sides of the boundary equation, the scattering matrix equation isobtained, the scattering coefficients can be obtained from the equation. Then the scatteringcharacteristics of the iris with circular window in circular groove waveguide are analyzed. At lastthe convergent problem is discussed; when choosing a suitable mode group, convergent numericalresults are obtained, and the frequency response of the iris' scattering coefficients is also given.展开更多
A rotary swaging machine was applied to fabricating pipe reduction for miniature inner grooved copper tube (MIGCT) heat pipes. Compared with conventional swaging method, the axial feed of the designed rotary swaging...A rotary swaging machine was applied to fabricating pipe reduction for miniature inner grooved copper tube (MIGCT) heat pipes. Compared with conventional swaging method, the axial feed of the designed rotary swaging machine was reached by a constant pushing force. The deformation of grooves in pipe reduced section during rotary swaging was analyzed. The shrinkage and extensibility of pipe reduction were measured and calculated. Furthermore, four aspects, including outer diameter, surface roughness, extensibility and processing time of pipe reduction, which were influenced by the pushing force, were considered. The results show that the tube wall thickness increases gradually along the z-axis at sinking section. However, the outer diameters, surface roughness and micro-cracks at reduced section tend to decrease along the z-axis. Besides, the effect of variation in the pushing force on the extensibility is limited while an increase in the pushing force results in a decrease of surface roughness. Therefore, a large pushing force within the limit is beneficial to pipe reduction manufacturing during rotary swaging process.展开更多
To analyze the influence of surface texture on friction properties of Crl2MoV', ordinary grinder and spinning technology were adopted to obtain the grooved surface morphology of samples, and then the impact of spindl...To analyze the influence of surface texture on friction properties of Crl2MoV', ordinary grinder and spinning technology were adopted to obtain the grooved surface morphology of samples, and then the impact of spindle speed and feed in z-direction on surface morphology in the process of spinning was studied. In addition, the corresponding friction coefficient of sample was obtained through friction and wear tests. The results show that the peak clipping and the valley filling were conducted on the grinding surface, which could improve the surface roughness effectively and make the grinding trench-type wear scar more uniform. Both the area ratio of groove and groove spacing increased initially and then decreased with the increase of the spindle speed or the feed in z-direction. As a kind of micro-process, the groove could influence the friction coefficient of sample surface, whose distribution was beneficial to the reduction of friction coefficient. Compared with the surface obtained through ordinary grinding, grooved surface morphology through spinning technology was more conductive to reduce the friction coefficient, which could be reduced by 25%. When the friction coefficient of sample was reduced to the minimum, the texture of groove corresponded had an optimal area ratio and an optimal groove spacing, 37.5% and 27.5 μm, respectively.展开更多
A FEM model for a failed industrial example of roll forging was established to analyze the generation mechanisms of the mismatch of size and shape of two spring board.To demonstrate the formulation of these defects,th...A FEM model for a failed industrial example of roll forging was established to analyze the generation mechanisms of the mismatch of size and shape of two spring board.To demonstrate the formulation of these defects,the bites condition and contact status between rectangular groove and workpiece during rolling the first and second spring boards were analyzed.Then,a new oval-diamond groove combining oval groove and diamond groove was presented to eliminate these defects.By analyzing field variables under the same deformation degree,the larger friction can be obtained on the contact surface of workpiece and the oval-diamond groove.The physical experiment validates that the oval-diamond groove can eliminate these defects effectively,and the size of part is in good agreement with design requirement.展开更多
The coupling effect among the flow of fluid film, the frictional heat of fluid film and the thermal deformation of sealing rings is inherent in mechanical seals. The frictional heat transfer analysis was carded out to...The coupling effect among the flow of fluid film, the frictional heat of fluid film and the thermal deformation of sealing rings is inherent in mechanical seals. The frictional heat transfer analysis was carded out to optimize the geometrical parameters of the sealing rings, such as the length, the inner radius and the outer radius. The geometrical parameters of spiral grooves, such as the spiral angle, the end radius, the groove depth, the ratio of the groove width to the weir width and the number of the grooves, were optimized by regarding the maximum bearing force of fluid film as the optimization objective with the coupling effect considered. The depth of spiral groove was designed to gradually increase from the end radius of spiral groove to the outer radius of end face in order to decrease the weakening effect of thermal deformation on the hydrodynamic effect of spiral grooves. The end faces of sealing rings were machined to form a divergent gap at inner radius, and a parallel gap will form to reduce the leakage rate when the thermal deformation takes place. The improved spiral groove mechanical seal possesses good heat transfer performance and sealing ability.展开更多
A 0. 1μm SOI grooved gate pMOSFET with 5.6nm gate oxide is fabricated and demonstrated. The groove depth is 180nm. The transfer characteristics and the output characteristics are shown. At Vds = -1. 5V,the drain satu...A 0. 1μm SOI grooved gate pMOSFET with 5.6nm gate oxide is fabricated and demonstrated. The groove depth is 180nm. The transfer characteristics and the output characteristics are shown. At Vds = -1. 5V,the drain saturation current is 380μA and the off-state leakage current is 1.9nA;the sub-threshold slope is 115mV/dec at Vds = -0. 1V and DIBL factor is 70. 7mV/V. The electrical characteristic comparison between the 0.1μm SOI groovedgate pMOSFET and the 0. 1μm bulk grooved gate one with the same process demonstrates that a 0. 1μm SOI grooved gate pMOSFET has better characteristics in current-driving capability and sub-threshold slope.展开更多
Experimental and numerical investigations have been conducted to study turbulent flow of water and heat transfer characteristics in a rectangular channel with discontinuous crossed ribs and grooves.The tests investiga...Experimental and numerical investigations have been conducted to study turbulent flow of water and heat transfer characteristics in a rectangular channel with discontinuous crossed ribs and grooves.The tests investigated the overall heat transfer performance and friction factor in ribbed and ribbed-grooved channels with rib angle of 30°.The experimental results show that the overall thermo-hydraulic performance for ribbed-grooved channel is increased by 10%-13.6% when compared to ribbed channel.The investigation on the effects of different rib angles and rib pitches on heat transfer characteristics and friction factor in ribbed-grooved channel was carried out using Fluent with SST(shear-stress transport) k-ω turbulence model.The numerical results indicate that the case for rib angle of 45° shows the best overall thermo-hydraulic performance,about 18%-36% higher than the case for rib angle of 0°.In addition,the flow patterns and local heat transfer characteristics for ribbed and ribbed-grooved channels based on the numerical simulation were also analyzed to reveal the mechanism of heat transfer enhancement.展开更多
A thermal model for a heat pipe with axially swallow-tailed microgrooves is developed and analyzed numerically to predict the heat transfer capacity and total thermal resistance.The effect of heat load on the axial di...A thermal model for a heat pipe with axially swallow-tailed microgrooves is developed and analyzed numerically to predict the heat transfer capacity and total thermal resistance.The effect of heat load on the axial distribution of capillary radius,and the effect of working temperature and wick structure on the maximum heat transfer capability,as well as the effect of the heat load and working temperature on the total thermal resistance are all investigated and discussed.It is indicated that the meniscus radius increases non-linearly and slowly at the evaporator and adiabatic section along the axial direction,while increasing drastically at the beginning of the condenser section.The pressure difference in the vapor phase along the axial direction is much smaller than that in the liquid phase.In addition,the heat transfer capacity is deeply affected by the working temperature and the size of the wick.A groove wick structure with a wider groove base width and higher groove depth can enhance the heat transfer capability.The effect of the working temperature on the total thermal resistance is insignificant;however,the total thermal resistance shows dependence upon the heat load.In addition,the accuracy of the model is also verified by the experiment in this paper.展开更多
In order to reduce pressure pulsation of vortex pumps,the mantis shrimp was chosen as biological prototype and a bionic engineering model was developed from its abdominal segment grooves.Bionic mantis shrimp groove vo...In order to reduce pressure pulsation of vortex pumps,the mantis shrimp was chosen as biological prototype and a bionic engineering model was developed from its abdominal segment grooves.Bionic mantis shrimp groove volute vortex pump models with different numbers of grooves were developed,and numerical simulation methods were used to calculate the models to study the effects of the volute grooves on the pressure pulsation of a vortex pump.The results show that a bionic groove volute could effectively improve the pressure pulsation of a vortex pump outlet,and reduce the pressure pulsation around the pump’s tongue and other internal points.The pressure pulsation under different conditions is impacted by shaft frequency and blade frequency.The bionic groove structure has little effect on the external characteristics of the pump,but could improve the static pressure,velocity distribution,and vortex structure of the flow field.Additionally,pressure pulsation of the whole vortex pump is reduced.展开更多
The aim of this work is to develop a three-dimensional model of deep groove ball bearing to investigate the loaded stresses and central displacements of bearing rings. The equivalent stresses and central displacements...The aim of this work is to develop a three-dimensional model of deep groove ball bearing to investigate the loaded stresses and central displacements of bearing rings. The equivalent stresses and central displacements of bearing rings are obtained based on the simulated analysis. Moreover, several parameters, such as load magnitude, raceway groove curvature radius(RGCR), thicknesses of outer and inner rings, are varied to investigate their effects on the equivalent stresses and central displacements of bearing rings. Research results provide useful guidelines for determining the design parameters.展开更多
The use of a constrained groove pressing(CGP) method to plastically deform AA6063 aluminum alloy led to the improved surface properties. It was found that hardness magnitude is dramatically improved and its uniformity...The use of a constrained groove pressing(CGP) method to plastically deform AA6063 aluminum alloy led to the improved surface properties. It was found that hardness magnitude is dramatically improved and its uniformity is considerably decreased after the first pass, while subsequent passes result in better hardness behavior for the processed material. Also, the elongated grains formed in the first pass of the CGP are gradually converted to the equiaxed counterparts by adding pass numbers. Eventually, higher corrosion resistance of the sample by imposing the CGP process is related to the quick formation of passivation film and the change in the morphology of the second phase and precipitates which hinder their electrochemical reactions and decrease the potential localized attack sites.展开更多
基金Project supported by the Natural Science Foundation of Guangdong Province (Grant No.2021A1515012335)the National Natural Science Foundation of China (Grant No.11274400)+2 种基金Pearl River S&T Nova Program of Guangzhou (Grant No.201506010059)State Key Laboratory of High Field Laser Physics (Shanghai Institute of Optics and Fine Mechanics)State Key Laboratory of Optoelectronic Materials and Technologies (Sun Yat-Sen University)。
文摘It is well known that femtosecond laser pulses can easily spontaneously induce deep-subwavelength periodic surface structures on transparent dielectrics but not on non-transparent semiconductors.Nevertheless,in this study,we demonstrate that using high-numerical-aperture 800 nm femtosecond laser direct writing with controlled pulse energy and scanning speed in the near-damage-threshold regime,polarization-dependent deep-subwavelength single grooves with linewidths of~180 nm can be controllably prepared on Si.Generally,the single-groove linewidth increases slightly with increase in the pulse energy and decrease in the scanning speed,whereas the single-groove depth significantly increases from~300 nm to~600 nm with decrease in the scanning speed,or even to over 1μm with multi-processing,indicating the characteristics of transverse clamping and longitudinal growth of such deep-subwavelength single grooves.Energy dispersive spectroscopy composition analysis of the near-groove region confirms that single-groove formation tends to be an ultrafast,non-thermal ablation process,and the oxidized deposits near the grooves are easy to clean up.Furthermore,the results,showing both the strong dependence of groove orientation on laser polarization and the occurrence of double-groove structures due to the interference of pre-formed orthogonal grooves,indicate that the extraordinary field enhancement of strong polarization sensitivity in the deep-subwavelength groove plays an important role in single-groove growth with high stability and collimation.
文摘The dynamics model of a 2-degree-of-freedom deep groove ball bearing is established by incorporating the raceway surface waviness model comprising multiple sinusoidal functions superposition.The model is solved using the fourth-order Runge-Kutta method to obtain the vibration characteristics including displacement,velocity,acceleration,and frequency of the bearing.Validation of the model is accomplished through comparison with theoretical vibration frequencies.The influence of the amplitude of waviness of the inner and outer ring raceway surfaces of deep groove ball bearings on the vibration displacement,peak-to-peak vibration displacement and root-mean-square vibration acceleration is analyzed,and the results show that as the amplitude of the inner and outer ring raceway surfaces waviness increases,all the vibration characteristic indexes increase,indicating that the vibration amplitude of the bearings as well as the energy of the waviness-induced shock waveforms increase with the increase of the amplitude of the waviness.
文摘Objective: To explore the application value of disposable grooved negative pressure drainage tubes in rib fracture incision and internal fixation. Methods: Seventy-five patients admitted to our Department of Trauma Surgery from June 2022 to April 2024 who underwent rib fracture osteotomy and internal fixation were selected. According to the types of drainage tubes left in the patients after the operation, they were divided into the observation group (35 cases who were left with disposable grooved negative pressure drainage tubes) and the control group (40 cases who were left with closed silicone thoracic drainage tubes). Comparison of chest drainage, pain, postoperative complications, secondary chest penetration rate, drain placement time, hospitalization time, and treatment costs were compared between the two groups. Results: The total postoperative chest drainage volume of the observation group was less than that of the control group (P < 0.05);the degree of pain, the incidence of postoperative complications, and the rate of secondary chest puncture in the observation group were lower than that of the control group three days after the operation (P < 0.05);and the time of drain placement in the observation group was shorter than that of the control group (P < 0.05). Conclusion: The application of disposable grooved negative pressure drainage tubes in rib fracture incision and internal fixation can significantly improve patients’ postoperative pain and discomfort, reduce complications, lower the rate of secondary chest penetration, promote patients’ postoperative recovery, decrease the amount of postoperative chest drainage, and shorten the time of drain placement, which is worthy of clinical promotion and application.
基金Supported by National Natural Science Foundation of China,No.82100568.
文摘BACKGROUND Groove pancreatitis(GP)is a rare condition affecting the pancreatic groove region within the dorsal-cranial part of the pancreatic head,duodenum,and common bile duct.As a rare form of chronic pancreatitis,GP poses a diagnostic and therapeutic challenge for clinicians.GP is frequently misdiagnosed or not considered;thus,the diagnosis is often delayed by weeks or months.The treatment of GP is complicated and often requires surgical intervention,especially pancreatoduodenectomy.CASE SUMMARY A 66-year-old man with a history of long-term drinking was admitted to the gastroenterology department of our hospital,complaining of vomiting and acid reflux.Upper gastrointestinal endoscopy showed luminal stenosis in the descending part of the duodenum.Abdominal computed tomography showed slight exudation in the descending and horizontal parts of the duodenum with broadening of the groove region,indicating local pancreatitis.The symptoms of intestinal obstruction were not relieved with conservative therapy,and insertion of an enteral feeding tube was not successful.Exploratory laparoscopy was performed and revealed a hard mass with scarring in the horizontal part of the duodenum and stenosis.Intraoperative frozen section analysis showed no evidence of malignancy,and side-to-side duodenojejunostomy was performed.Routine pathologic examination showed massive proliferation of fibrous tissue,hyaline change,and the proliferation of spindle cells.Based on the radiologic and pathologic characteristics,a diagnosis of GP was made.The patient presented with anastomotic obstruction postoperatively and took a long time to recover,requiring supportive therapy.CONCLUSION GP often involves the descending and horizontal parts of the duodenum and causes duodenal stenosis,impaired duodenal motility,and gastric emptying due to fibrosis.
文摘Mode matching method is used to analyze the scattering characteristics of thecircular-to-circular groove waveguide junction. Matching the electric fields and magnetic fields atthe boundary of the junction, and multiplying the mode functions of the circular waveguide andcircular groove waveguide on both sides of the boundary equation, the scattering matrix equation isobtained, the scattering coefficients can be obtained from the equation. Then the scatteringcharacteristics of the iris with circular window in circular groove waveguide are analyzed. At lastthe convergent problem is discussed; when choosing a suitable mode group, convergent numericalresults are obtained, and the frequency response of the iris' scattering coefficients is also given.
基金Project (U0834002) supported by the Key Program of NSFC Guangdong Joint Funds of ChinaProjects (51005079, 20976055) supported by the National Natural Science Foundation of China+1 种基金Project (10451064101005146) supported by the Natural Science Foundation of Guangdong Province, ChinaProject (20100172120001) supported by Specialized Research Fund for the Doctoral Program of Higher Education, China
文摘A rotary swaging machine was applied to fabricating pipe reduction for miniature inner grooved copper tube (MIGCT) heat pipes. Compared with conventional swaging method, the axial feed of the designed rotary swaging machine was reached by a constant pushing force. The deformation of grooves in pipe reduced section during rotary swaging was analyzed. The shrinkage and extensibility of pipe reduction were measured and calculated. Furthermore, four aspects, including outer diameter, surface roughness, extensibility and processing time of pipe reduction, which were influenced by the pushing force, were considered. The results show that the tube wall thickness increases gradually along the z-axis at sinking section. However, the outer diameters, surface roughness and micro-cracks at reduced section tend to decrease along the z-axis. Besides, the effect of variation in the pushing force on the extensibility is limited while an increase in the pushing force results in a decrease of surface roughness. Therefore, a large pushing force within the limit is beneficial to pipe reduction manufacturing during rotary swaging process.
基金Project(51275543)supported by the National Natural Science Foundation,ChinaProject(KJ1603804)supported by the Research Projects of Chongqing Commission of Science and Technology,China
文摘To analyze the influence of surface texture on friction properties of Crl2MoV', ordinary grinder and spinning technology were adopted to obtain the grooved surface morphology of samples, and then the impact of spindle speed and feed in z-direction on surface morphology in the process of spinning was studied. In addition, the corresponding friction coefficient of sample was obtained through friction and wear tests. The results show that the peak clipping and the valley filling were conducted on the grinding surface, which could improve the surface roughness effectively and make the grinding trench-type wear scar more uniform. Both the area ratio of groove and groove spacing increased initially and then decreased with the increase of the spindle speed or the feed in z-direction. As a kind of micro-process, the groove could influence the friction coefficient of sample surface, whose distribution was beneficial to the reduction of friction coefficient. Compared with the surface obtained through ordinary grinding, grooved surface morphology through spinning technology was more conductive to reduce the friction coefficient, which could be reduced by 25%. When the friction coefficient of sample was reduced to the minimum, the texture of groove corresponded had an optimal area ratio and an optimal groove spacing, 37.5% and 27.5 μm, respectively.
基金Project(51275543)supported by the National Natural Science Foundation of ChinaProject(cstc2009aa3012-1)supported by the Key Program of Chongqing Science and Technology Foundation,China
文摘A FEM model for a failed industrial example of roll forging was established to analyze the generation mechanisms of the mismatch of size and shape of two spring board.To demonstrate the formulation of these defects,the bites condition and contact status between rectangular groove and workpiece during rolling the first and second spring boards were analyzed.Then,a new oval-diamond groove combining oval groove and diamond groove was presented to eliminate these defects.By analyzing field variables under the same deformation degree,the larger friction can be obtained on the contact surface of workpiece and the oval-diamond groove.The physical experiment validates that the oval-diamond groove can eliminate these defects effectively,and the size of part is in good agreement with design requirement.
文摘The coupling effect among the flow of fluid film, the frictional heat of fluid film and the thermal deformation of sealing rings is inherent in mechanical seals. The frictional heat transfer analysis was carded out to optimize the geometrical parameters of the sealing rings, such as the length, the inner radius and the outer radius. The geometrical parameters of spiral grooves, such as the spiral angle, the end radius, the groove depth, the ratio of the groove width to the weir width and the number of the grooves, were optimized by regarding the maximum bearing force of fluid film as the optimization objective with the coupling effect considered. The depth of spiral groove was designed to gradually increase from the end radius of spiral groove to the outer radius of end face in order to decrease the weakening effect of thermal deformation on the hydrodynamic effect of spiral grooves. The end faces of sealing rings were machined to form a divergent gap at inner radius, and a parallel gap will form to reduce the leakage rate when the thermal deformation takes place. The improved spiral groove mechanical seal possesses good heat transfer performance and sealing ability.
文摘A 0. 1μm SOI grooved gate pMOSFET with 5.6nm gate oxide is fabricated and demonstrated. The groove depth is 180nm. The transfer characteristics and the output characteristics are shown. At Vds = -1. 5V,the drain saturation current is 380μA and the off-state leakage current is 1.9nA;the sub-threshold slope is 115mV/dec at Vds = -0. 1V and DIBL factor is 70. 7mV/V. The electrical characteristic comparison between the 0.1μm SOI groovedgate pMOSFET and the 0. 1μm bulk grooved gate one with the same process demonstrates that a 0. 1μm SOI grooved gate pMOSFET has better characteristics in current-driving capability and sub-threshold slope.
基金Supported by the Guangdong Science and Technology Project (2008A01070003)
文摘Experimental and numerical investigations have been conducted to study turbulent flow of water and heat transfer characteristics in a rectangular channel with discontinuous crossed ribs and grooves.The tests investigated the overall heat transfer performance and friction factor in ribbed and ribbed-grooved channels with rib angle of 30°.The experimental results show that the overall thermo-hydraulic performance for ribbed-grooved channel is increased by 10%-13.6% when compared to ribbed channel.The investigation on the effects of different rib angles and rib pitches on heat transfer characteristics and friction factor in ribbed-grooved channel was carried out using Fluent with SST(shear-stress transport) k-ω turbulence model.The numerical results indicate that the case for rib angle of 45° shows the best overall thermo-hydraulic performance,about 18%-36% higher than the case for rib angle of 0°.In addition,the flow patterns and local heat transfer characteristics for ribbed and ribbed-grooved channels based on the numerical simulation were also analyzed to reveal the mechanism of heat transfer enhancement.
基金Supported by the 11th Five Year National Science and Technology Support Key Project of China(2008BAJ12B02)
文摘A thermal model for a heat pipe with axially swallow-tailed microgrooves is developed and analyzed numerically to predict the heat transfer capacity and total thermal resistance.The effect of heat load on the axial distribution of capillary radius,and the effect of working temperature and wick structure on the maximum heat transfer capability,as well as the effect of the heat load and working temperature on the total thermal resistance are all investigated and discussed.It is indicated that the meniscus radius increases non-linearly and slowly at the evaporator and adiabatic section along the axial direction,while increasing drastically at the beginning of the condenser section.The pressure difference in the vapor phase along the axial direction is much smaller than that in the liquid phase.In addition,the heat transfer capacity is deeply affected by the working temperature and the size of the wick.A groove wick structure with a wider groove base width and higher groove depth can enhance the heat transfer capability.The effect of the working temperature on the total thermal resistance is insignificant;however,the total thermal resistance shows dependence upon the heat load.In addition,the accuracy of the model is also verified by the experiment in this paper.
基金Projects(51779226,51476144)supported by the National Natural Science Foundation of ChinaProject(2017C31025)supported by Zhejiang Province Department Public Welfare Industrial Projects,China+1 种基金Project(2016M601736)supported by Postdoctoral Science Foundation of ChinaProject(1601028C)supported by Postdoctoral Research Funding Plan in Jiangsu Province,China
文摘In order to reduce pressure pulsation of vortex pumps,the mantis shrimp was chosen as biological prototype and a bionic engineering model was developed from its abdominal segment grooves.Bionic mantis shrimp groove volute vortex pump models with different numbers of grooves were developed,and numerical simulation methods were used to calculate the models to study the effects of the volute grooves on the pressure pulsation of a vortex pump.The results show that a bionic groove volute could effectively improve the pressure pulsation of a vortex pump outlet,and reduce the pressure pulsation around the pump’s tongue and other internal points.The pressure pulsation under different conditions is impacted by shaft frequency and blade frequency.The bionic groove structure has little effect on the external characteristics of the pump,but could improve the static pressure,velocity distribution,and vortex structure of the flow field.Additionally,pressure pulsation of the whole vortex pump is reduced.
基金the National Natural Science Foundation of China (No. 51605354)the Fundamental Research Funds for the Central Universities (WUT: 2015IVA021)+1 种基金the Innovative Research Team Development Program of Ministry of Education of China (No. IRT13087)the High-end Talent Leading Program of Hubei Province (No. 201286)
文摘The aim of this work is to develop a three-dimensional model of deep groove ball bearing to investigate the loaded stresses and central displacements of bearing rings. The equivalent stresses and central displacements of bearing rings are obtained based on the simulated analysis. Moreover, several parameters, such as load magnitude, raceway groove curvature radius(RGCR), thicknesses of outer and inner rings, are varied to investigate their effects on the equivalent stresses and central displacements of bearing rings. Research results provide useful guidelines for determining the design parameters.
基金funded by“Quality Engineering Project of Anhui Province of China in 2016”entitled mold design and manufacturing experimental training center(2016sxzx050)。
文摘The use of a constrained groove pressing(CGP) method to plastically deform AA6063 aluminum alloy led to the improved surface properties. It was found that hardness magnitude is dramatically improved and its uniformity is considerably decreased after the first pass, while subsequent passes result in better hardness behavior for the processed material. Also, the elongated grains formed in the first pass of the CGP are gradually converted to the equiaxed counterparts by adding pass numbers. Eventually, higher corrosion resistance of the sample by imposing the CGP process is related to the quick formation of passivation film and the change in the morphology of the second phase and precipitates which hinder their electrochemical reactions and decrease the potential localized attack sites.