期刊文献+
共找到227篇文章
< 1 2 12 >
每页显示 20 50 100
Numerical Modeling and Analysis of Grooved Surface Applied to Film Cooling 被引量:3
1
作者 L. Guo Z. C. Liu +1 位作者 Y. Y. Yan Z. W. Han 《Journal of Bionic Engineering》 SCIE EI CSCD 2011年第4期464-473,共10页
In order to improve the efficiency of film cooling, numerical investigation was carried out to study the effects of different film-cooled plates on surface heat transfer. Both grooved and non-grooved surfaces were con... In order to improve the efficiency of film cooling, numerical investigation was carried out to study the effects of different film-cooled plates on surface heat transfer. Both grooved and non-grooved surfaces were concerned. The modeling was per- formed using Fluent software with the adoption of Shear-Stress Transport (SST) k-ωmodel as the turbulence closure. The coolant was supplied by a single film cooling hole with an inclination angle of 30°. The Mach numbers for the coolant flow and the mainstream flow were fixed at 0 and 0.6, respectively. At three blowing ratios of 0.5, 1.0 and 1.5, the aerodynamic behaviour of the mixing process as well as the heat transfer performance of the film cooling were presented. The numerical results were validated using experimental data extracted from a benchmark test. Good agreements between numerical results and the ex- perimental data were observed. For the film cooling efficiency, it shows that both local and laterally averaged cooling effectiveness can be improved by the non-smooth surface at different blowing ratios. Using the grooved surface, the turbulence intensity upon the plate can be reduced notably, and the mixing between the two flows is weakened due to the reduced turbu lence level. The results indicate that the cooling effectiveness of film cooling can be enhanced by applying the grooved surface. 展开更多
关键词 film cooling non-smooth surface cooling effectiveness grooved structure blowing ratio
下载PDF
Ejecta from periodic grooved Sn surface under unsupported shocks 被引量:3
2
作者 刘文斌 马东军 +1 位作者 何安民 王裴 《Chinese Physics B》 SCIE EI CAS CSCD 2018年第1期444-449,共6页
Dynamic failure and ejection characteristics of a periodic grooved Sn surface under unsupported shock loading are studied using a smoothed particle hydrodynamics method. An "Eiffel Tower" spatial structure is observ... Dynamic failure and ejection characteristics of a periodic grooved Sn surface under unsupported shock loading are studied using a smoothed particle hydrodynamics method. An "Eiffel Tower" spatial structure is observed, which is com- posed of high-speed jet tip, high-density jet slug, longitudinal tensile sparse zone, and complex broken zone between grooves. It is very different from the spike-bubble structure under supported shocks, and has been validated by detonation loading experiments. In comparison with that under supported shocks at the same peak pressure, the high-speed ejecta decreases obviously, whereas the truncated location of ejecta moves towards the interior of the sample and the total mass of ejecta increases due to the vast existence of low-speed broken materials. The shock wave profile determines mainly the total ejection amount, while the variation of V-groove angle will significantly alter the distribution of middle- and high-speed ejecta, and the maximum ejecta velocity has a linear corretation with the groove angle. 展开更多
关键词 EJECTA grooved Sn surface "Eiffel Tower" structure unsupported shock
下载PDF
Physical understanding of axonal growth patterns on grooved substrates:groove ridge crossing versus longitudinal alignment 被引量:2
3
作者 Deming Zhang Hairui Suo +3 位作者 Jin Qian Jun Yin Jianzhong Fu Yong Huang 《Bio-Design and Manufacturing》 SCIE CSCD 2020年第4期348-360,共13页
Surface topographies such as micrometric edges and grooves have been widely used to improve neuron outgrowth.However,finding the mechanism of neuron–surface interactions on grooved substrates remains a challenge.In t... Surface topographies such as micrometric edges and grooves have been widely used to improve neuron outgrowth.However,finding the mechanism of neuron–surface interactions on grooved substrates remains a challenge.In this work,PC12 cells and chick forebrain neurons(CFNs)were cultured on grooved and smooth polyacrylonitrile substrates.It was found that CFNs showed a tendency of growing across groove ridges;while PC12 cells were only observed to grow in the longitudinal direction of grooves.To further investigate these observations,a 3D physical model of axonal outgrowth was developed.In this model,axon shafts are simulated as elastic 3D beams,accounting for the axon outgrowth as well as the focal contacts between axons and substrates.Moreover,the bending direction of axon tips during groove ridge crossing is governed by the energy minimization principle.Our physical model predicts that axonal groove ridge crossing is contributed by the bending compliance of axons,caused by lower Young’s modulus and smaller diameters.This work will aid the understanding of the mechanisms involved in axonal alignment and elongation of neurons guided by grooved substrates,and the obtained insights can be used to enhance the design of instructive scaffolds for nerve tissue engineering and regeneration applications. 展开更多
关键词 grooved substrates Neuron outgrowth Axonal outgrowth model Axonal crossing
下载PDF
Firm embedding behavior of annular grooved projectiles impacting ductile metal targets 被引量:1
4
作者 Qi Huang Shun-shan Feng +3 位作者 Xu-ke Lan Chao-nan Chen Yong-xiang Dong Tong Zhou 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2019年第5期768-778,共11页
Annular grooved projectiles(AGPs)have drawn ongoing concerns as an advanced penetrator for their excellent anti-rebound capability in impacting metal plates.They could become embedded solidly in the target surface dur... Annular grooved projectiles(AGPs)have drawn ongoing concerns as an advanced penetrator for their excellent anti-rebound capability in impacting metal plates.They could become embedded solidly in the target surface during low-velocity impact.In this investigation,the firm embedding behavior of AGP was observed by impact experiments.Corresponding numerical simulations provided a better understanding of this process.Experimental and numerical results indicated that the firm embedding behavior of AGP was mainly due to the filling-material in the groove rather than the friction between the projectile and target,unlike traditional shape such as conical projectile.According to observation,firm embedding process can generally be subdivided into four stages:initial-cratering stage,groove-filling stage,fillingmaterial failure stage and rebound vibration stage.Moreover,the damage mechanics of target material around crater was obtained through microscopic tests.A comparison of the cross-sectional figures between the experiment and simulation proved that the analysis and the proposed method were reasonable and feasible,which further demonstrated that the firm embedding behavior has application potential in new concept warheads. 展开更多
关键词 ANNULAR grooved projectile (AGP) Impact FIRM EMBEDDING BEHAVIOR Flow characteristics Microscopic tests
下载PDF
Formation and preferred growth behavior of grooved seed silicon substrate for kerfless technology
5
作者 鄢靖源 王勇炜 +4 位作者 郭勇明 张伟 王聪 安保礼 刘东方 《Chinese Physics B》 SCIE EI CAS CSCD 2019年第6期343-348,共6页
Kerfless technology is a promising alternative for reducing cost and providing flexible thin crystals in silicon-based semiconductors. In this work we propose a protruded seed substrate technology to prepare flexible ... Kerfless technology is a promising alternative for reducing cost and providing flexible thin crystals in silicon-based semiconductors. In this work we propose a protruded seed substrate technology to prepare flexible monocrystalline Si thin film economically. Grooved seed substrate is fabricated by using SiNx thin film as a mask for the wet-etching and thermal oxidation process. After the SiNx layer on the wedged strip is removed by hot phosphoric acid, the pre-defined structured substrate is achieved with the top of the strip serving as the seed site where there is no oxide layer. And a preferred growth of epitaxial Si on the substrate is performed by introducing an intermittent feed method for silicon source gas. The technique in this paper obviously enhances the mechanical stability of the seed structure and the growth behavior on the seed sites, compared with our previous techniques, so this technique promises to be used in the industrial fabrication of flexible Si-based devices. 展开更多
关键词 kerfless grooved SEED SUBSTRATE preferred GROWTH
下载PDF
Numerical investigation of grooves effects on the thermal performance of helically grooved shell and coil tube heat exchanger
6
作者 Mehdi Miansari Mehdi Rajabtabar Darvishi +3 位作者 Davood Toghraie Pouya Barnoon Mojtaba Shirzad As'ad Alizadeh 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2022年第4期424-434,共11页
Heat exchangers are integral parts of important industrial units such as petrochemicals,medicine and power plants.Due to the importance of systems energy consumption,different modifications have been applied on heat e... Heat exchangers are integral parts of important industrial units such as petrochemicals,medicine and power plants.Due to the importance of systems energy consumption,different modifications have been applied on heat exchangers in terms of size and structure.In this study,a novel heat exchanger with helically grooved annulus shell and helically coiled tube was investigated by numerical simulation.Helically grooves with the same pitch of the helical coil tube and different depth are created on the inner and outer wall of annulus shell to improve the thermal performance of heat exchanger.In the first section,thermal performance of the shell and coil heat exchanger with the helical grooves on its outer shell wall was compared with same but without helical grooves.At the second section,helically grooves created on both outer and inner wall of the annulus shell with different groove depths.The results showed that the heat exchanger with grooves on both inner and outer shell wall has better thermal performance up to 20%compared to the heat exchanger with grooves on only outer shell wall.The highest thermal performance achieves at lower flow rates and higher groove depths whereas the pressure drop did not increase significantly. 展开更多
关键词 Numerical simulation Heat transfer Turbulent flow Shell and coil Helically grooved shell Heat exchanger
下载PDF
Partial penetration of annular grooved projectiles impacting ductile metal targets
7
作者 Qi Huang Shun-shan Feng +3 位作者 Xu-ke Lan Qing Song Tong Zhou Yong-xiang Dong 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2021年第4期1115-1125,共11页
Changing and optimizing the projectile nose shape is an important way to achieve specific ballistic performance.One special ballistic performance is the embedding effect,which can achieve a delayed high-explosive reac... Changing and optimizing the projectile nose shape is an important way to achieve specific ballistic performance.One special ballistic performance is the embedding effect,which can achieve a delayed high-explosive reaction on the target surface.This embedding effect includes a rebound phase that is significantly different from the traditional penetration process.To better study embedment behavior,this study proposed a novel nose shape called an annular grooved projectile and defined its interaction process with the ductile metal plate as partial penetration.Specifically,we conducted a series of lowvelocity-ballistic tests in which these steel projectiles were used to strike 16-mm-thick target plates made with 2024-O aluminum alloy.We observed the dynamic evolution characteristics of this aluminum alloy near the impact craters and analyzed these characteristics by corresponding cross-sectional views and numerical simulations.The results indicated that the penetration resistance had a brief decrease that was influenced by its groove structure,but then it increased significantlydthat is,the fluctuation of penetration resistance was affected by the irregular nose shape.Moreover,we visualized the distribution of the material in the groove and its inflow process through the rheology lines in microscopic tests and the highlighted mesh lines in simulations.The combination of these phenomena revealed the embedment mechanism of the annular grooved projectile and optimized the design of the groove shape to achieve a more firm embedment performance.The embedment was achieved primarily by the target material filled in the groove structure.Therefore,preventing the shear failure that occurred on the filling material was key to achieving this embedding effect. 展开更多
关键词 Partial penetration Embedment behavior Ballistic impact Annular grooved projectile(AGP) Microscopic experiments
下载PDF
Flexural Properties of Grooved Perforation Sandwich Composites
8
作者 方海 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2010年第4期583-587,共5页
Selecting H-60 PVC foam, four-axis E-glass non-woven fabric and vinyl resin, a type of innovative reinforced sandwich composite as grooved perforation sandwich (GPS) were fabricated by VIMP. The interfacial structur... Selecting H-60 PVC foam, four-axis E-glass non-woven fabric and vinyl resin, a type of innovative reinforced sandwich composite as grooved perforation sandwich (GPS) were fabricated by VIMP. The interfacial structure between the face and core of the sandwich is innovative because of the acuminate grooves in both sides of foam core and the holes perforated along core’s height. The fabrication results show that VIMP is a high-speed and cost-effective manufacturing method. The mechanical properties of the reinforced foam core were tested. The typical flexural failure modes of sandwich specimens were observed. The flexural stiffness and ultimate bearing capacity of sandwich were studied by ordinary sandwich beam theory and finite element method. 展开更多
关键词 vacuum infusion molding process (VIMP) grooved perforation sandwich (GPS) sandwich composite flexural properties
下载PDF
A Qualitative Study of the Influence of Grooved Mold Surface Topography on the Formation of Surface Marks on As-Cast Ingots of Aluminum Alloy 3003
9
作者 Prince N. Anyalebechi 《Materials Sciences and Applications》 2020年第4期263-284,共22页
The effects of the wavelength and orientation of machined grooves on a mold surface, casting speed, and melt superheat on the formation of surface marks on as-cast ingots were studied with an immersion casting tester ... The effects of the wavelength and orientation of machined grooves on a mold surface, casting speed, and melt superheat on the formation of surface marks on as-cast ingots were studied with an immersion casting tester and copper mold chill blocks. The mold surface topographies included a polished smooth surface, and those with machined unidirectional parallel contoured grooves oriented either parallel (vertical) or perpendicular (horizontal) to the casting direction. The unidirectional grooves were 0.232 mm deep with wavelength or spacing between 1 and 15 mm. The casting speed and melt superheat were between 1 and 200 mm/s, and 10 and 50 K, respectively. Two primary types of surface marks were observed on ingots cast with the copper mold with smooth surface topography, namely the finer and closely spaced ripples (Type I), and the widely spaced but coarser laps (Type II). The latter were more prevalent at the higher casting speeds and melt superheats. Qualitatively, formation of both types of surface marks on the as-cast ingots of the aluminum alloy 3003 appeared to be alleviated by increase in casting speed and melt superheat, and by the use of molds with grooved surface topography. In fact, casting with a mold surface with 1 mm spaced grooves that are perpendicular to the casting direction eliminated the formation of surface marks at casting speeds greater than 1 mm/s. It also improved the uniformity of the ingot subsurface microstructure and eliminated the associated subsurface segregation. 展开更多
关键词 RIPPLES LAPS grooved Mold SURFACE TOPOGRAPHY Casting Aluminum Alloy Lap Formation
下载PDF
INVESTIGATION ON THE APPLICATION OF THE BOUNDARY ELEMENT METHOD TO THE SPILL GROOVED THRUST BEARING
10
作者 Zhu Qin Yi Xuemei (School of Mechanical Engineering, Shanghai University) 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2000年第2期81-89,共9页
An application of the boundary element method (BEM) is presented to calculate the behaviors of a spiral grooved thrust bearing (SGTB). The basic reason is that the SGTB has very complex boundary conditions that can hi... An application of the boundary element method (BEM) is presented to calculate the behaviors of a spiral grooved thrust bearing (SGTB). The basic reason is that the SGTB has very complex boundary conditions that can hinder the effective or sufficient applications of the finite difference method (FDM) and the finite element method (FEM), despite some existing work based on the FDM and the FEM. In other to apply the BEM, the pressure control equation, i. e., Reynolds' equation, is first transformed into Laplace's and Poisson's form of the equations. Discretization of the SGTB with a set of boundary elements is thus explained in detail, which also includes the handling of boundary conditions. The Archimedean SGTB is chosen as an example of the application Of BEM, and the relationship between the behaviors and structure parameters of the bearing are found and discussed through this calculation. The obtained results lay a solid foundation for a further work of the design of the SGTB. 展开更多
关键词 Pressure control equation Boundary element method Spiral grooved thrust bearing
下载PDF
Microstructure and Mechanical Strength Predictive Modeling in Al 5052-Trapezoidal Grooved SS 304 Explosive Cladding 被引量:2
11
作者 Saravanan S Raghukandan K 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2020年第5期958-966,共9页
Aluminum alloy plates were explosively cladded to stainless steel plates with trapezoidal grooves on the mating surface.The process parameters viz,loading ratio,standoff distance and flyer plate thickness were varied ... Aluminum alloy plates were explosively cladded to stainless steel plates with trapezoidal grooves on the mating surface.The process parameters viz,loading ratio,standoff distance and flyer plate thickness were varied based on the Taguchi analogy.The variation in the process parameters alters the kinetic energy dissipation and the deformation work performed at the interface,and dictates the interfacial wave amplitude and the mechanical strength of the dissimilar explosive clad.The optimum level of process parameters for attaining higher tensile and shear strength is computed by signal-to-noise ratio.Further,a mathematical model is developed for calculating tensile and shear strength of the clad,based on the regression analysis using statistical software Minitab-16,and the level of fit is determined by analysis of variance. 展开更多
关键词 explosive cladding trapezoidal grooves MICROSTRUCTURE OPTIMIZATION STRENGTH
下载PDF
Numerical and experimental investigation on aluminum 6061-Vgrooved stainless steel 304 explosive cladding 被引量:1
12
作者 C.Wilson dhileep kumar S.Saravanan K.Raghukandan 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2022年第2期249-260,共12页
This study attempts to analyze the microstructure and interface behavior of aluminum 6061(Al 6061)-Vgrooved stainless steel(SS304)explosive cladding by numerical and experimental methods.Numerical simulation was perfo... This study attempts to analyze the microstructure and interface behavior of aluminum 6061(Al 6061)-Vgrooved stainless steel(SS304)explosive cladding by numerical and experimental methods.Numerical simulation was performed by Smoothed Particle Hydrodynamics(SPH)technique,in ANSYS AUTODYN,and the results are correlated with experimental outcome.The machining of V-grooves on the base plate transform the melted layer formed in conventional cladding(without grooves on the base plate)into a smooth undulating interface,for a similar experimental condition.The flyer plate and collision velocities,observed in numerical simulation,are in good agreement to the analytical expectations.The pressure developed in the flyer plate is higher than the base plate and the maximum pressure is witnessed at the collision point irrespective of grooved base plate or otherwise.The temperature developed in the collision point of conventional explosive cladding exceeds the melting point of both the participant metals,whereas,it exceeds the melting point of aluminum alone,in case of V-grooved base plate cladding.The shear and impact strengths of the V-grooved base plate clads are higher than the conventional clads and the fracture surfaces exhibit mixed modes of fracture. 展开更多
关键词 Explosive cladding Dissimilar metals GROOVES Numerical simulation Interface STRENGTH
下载PDF
Azimuthal anchoring of a nematic liquid crystal on a grooved interface with anisotropic polar anchoring 被引量:1
13
作者 周璇 张志东 +1 位作者 叶文江 宣丽 《Chinese Physics B》 SCIE EI CAS CSCD 2012年第6期378-384,共7页
Zhang Y J et al.[Zhang Y J,Zhang Z D,Zhu L Z and Xuan L 2011 Liquid Cryst.38 355] investigated the effects of finite polar anchoring on the azimuthal anchoring energy at a grooved interface,in which polar anchoring wa... Zhang Y J et al.[Zhang Y J,Zhang Z D,Zhu L Z and Xuan L 2011 Liquid Cryst.38 355] investigated the effects of finite polar anchoring on the azimuthal anchoring energy at a grooved interface,in which polar anchoring was isotropic in the local tangent plane of the surface.In this paper,we investigate the effects of both isotropic and anisotropic polar anchoring on the surface anchoring energy in the frame of Fukuda et al.’s theory.The results show that anisotropic polar anchoring strengthens the azimuthal anchoring of grooved surfaces.In the one-elastic-constant approximation(K11 = K22 = K33 = K),the surface-groove-induced azimuthal anchoring energy is entirely consistent with the result of Faetti,and it reduces to the original result of Berreman with an increase in polar anchoring.Moreover,the contribution of the surface-like elastic term to the Rapini-Papoular anchoring energy is zero. 展开更多
关键词 azimuthal anchoring energy surface grooves anchoring isotropy anchoring anisotropy
下载PDF
Erosion of Grooved Surfaces by Cavitating Jet with Hydraulic Oil 被引量:1
14
作者 Toshiharu Kazama Kento Kumagai +2 位作者 Yasuhiro Osafune Yukihito Narita Shohei Ryu 《Journal of Flow Control, Measurement & Visualization》 2015年第2期41-50,共10页
To study the effect of impingement surface geometry, a cavitation erosion experiment was conducted using a submerged cavitating jet rig with hydraulic oil. The test setup comprised a test chamber with a long-orifice n... To study the effect of impingement surface geometry, a cavitation erosion experiment was conducted using a submerged cavitating jet rig with hydraulic oil. The test setup comprised a test chamber with a long-orifice nozzle, a hydraulic pump with an electric motor, hydraulic auxiliaries, including valves, a cooler, a filter, a reservoir, and measuring instruments, including pressure gages and a thermometer. Hexahedral specimens made of aluminum alloy with flat and grooved surfaces and oblique angles were prepared. Hydraulic oil with a viscosity grade of 32 was used at 40&degC as the test fluid. The upstream absolute pressure was kept at 10.1 MPa and the cavitation numbers were set at 0.02 - 0.04. The results of this experiment yielded the following conclusions. The mass loss of the grooved specimens did not increase monotonically as the exposure time increased. The standoff distances at the maximum mass loss for the flat and grooved specimens were almost equivalent. The mass loss decreased as the oblique angle increased and the cavitation number increased, regardless of the presence of grooves. The surfaces were eroded in a ring-like region, but the region elongated as the angle increased. For the grooved specimens, the ridges on the ring were eroded, and when the directions of the grooves and the flow matched, the roots and flanks were severely eroded. 展开更多
关键词 Oil-Hydraulics CAVITATION EROSION JET GROOVES
下载PDF
Nanoscale spatial phase modulation of GaAs growth in V-grooved trenches on Si(001) substrate
15
作者 李士颜 周旭亮 +4 位作者 孔祥挺 李梦珂 米俊萍 王梦琦 潘教青 《Chinese Physics B》 SCIE EI CAS CSCD 2016年第12期451-454,共4页
This letter reports the nanoscale spatial phase modulation of GaAs growth in V-grooved trenches fabricated on a Si (001) substrate by metal-organic vapor-phase epitaxy, Two hexagonal GaAs regions with high density o... This letter reports the nanoscale spatial phase modulation of GaAs growth in V-grooved trenches fabricated on a Si (001) substrate by metal-organic vapor-phase epitaxy, Two hexagonal GaAs regions with high density of stacking faults parallel to Si {111 } surfaces are observed. A strain-relieved and defect-free cubic phase GaAs was achieved above these highly defective regions. High-resolution transmission electron microscopy and fast Fourier transforms analysis were performed to characterize these regions of GaAs/Si interface. We also discussed the strain relaxation mechanism and phase structure modulation of GaAs selectively grown on this artificially manipulated surface. 展开更多
关键词 phase modulation GAAS GROOVES Si
下载PDF
The Solids Conveying Mechanism for Helically Grooved Single-screw Extruders
16
作者 潘龙 JIA Mingyin +1 位作者 薛平 JIN Zhiming 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2013年第4期693-700,共8页
A novel particle-size conveying model was established to examine the effects of the dimension relationships of the groove depth and particle size on the solids conveying mechanism of the helically grooved feed section... A novel particle-size conveying model was established to examine the effects of the dimension relationships of the groove depth and particle size on the solids conveying mechanism of the helically grooved feed section. In the model, one or two shear interfaces were proposed based on the dimension relationships of the groove depth and particle size, and the solid-plug embedded in the groove and screw channel were divided into two or three layers by the shear interfaces to consider the solids conveying mechanism of each layer by the boundary condition equation for positive conveying. By the particle-size model, the effects of different dimension relationships on the transformation of solids conveying mechanisms between the friction-drag conveying and the positive conveying were discussed and compared with the on-line measuring experimental data. The results showed that the shear interfaces among the solids existed indeed and the dimension relationships determined the conveying mechanism and the throughput of helically grooved extruders, which was well confirmed by the excellent consistence between the predicted and measured data. 展开更多
关键词 solids conveying particle-size model positive conveying shear interface helical grooves
下载PDF
Calculation methods of lubricant film pressure distribution of radial grooved thrust bearings
17
作者 胡纪滨 刘丁华 魏超 《Journal of Beijing Institute of Technology》 EI CAS 2012年第2期198-202,共5页
In order to calculate the pressure distribution of radial grooved thrust bearing, analytical and numerical methods were applied respectively. Grooved region and land region were linked by u- sing the mass conservation... In order to calculate the pressure distribution of radial grooved thrust bearing, analytical and numerical methods were applied respectively. Grooved region and land region were linked by u- sing the mass conservations principle at the groove/land boundary in each method. The block-weight approach was implemented to deal with the non-coincidence of mesh and radial groove pattern in nu- merical method. It was observed that the numerical solutions had higher precision as mesh number exceed 70 x 70, and the relaxation iteration of differential scheme presented the fastest convergence speed when relaxation factor was close to 1.94. 展开更多
关键词 numerical method analytical method radial groove thrust bearing pressure distribu-tion
下载PDF
Increasing operational stability of journal bearing in hydraulic suspension micro-pump by herringbone grooved structure
18
作者 HONG Tao XING GuanYing +2 位作者 ZUO HuaiYu XUE Song LUO XiaoBing 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2024年第3期853-862,共10页
The operational stability of radial journal bearings is the bottleneck that limits the reliability of hydraulic suspension micropump. Due to self-excited vibrations, the whirl amplitude of the plain journal bearing(PJ... The operational stability of radial journal bearings is the bottleneck that limits the reliability of hydraulic suspension micropump. Due to self-excited vibrations, the whirl amplitude of the plain journal bearing(PJB) is large at high rotational speeds,which will accelerate wear failure. It has been proven that employing herringbone grooved journal bearing(HGJB) is an effective method to reduce the whirl amplitude and improve operational stability. However, enhancing the stability of journal bearings in micro-pumps by herringbone grooved structures has rarely been studied, and its effect needs to be verified. We validated the mechanism of the stability improvement with the CFD method and compared the dynamic characteristics of HGJB and PJB by rotor dynamics evaluation and experiment. The experimental results show that under the same conditions the whirl amplitude of the HGJB decreases by 29.61% in the x direction and by 24.09% in the y direction compared with that of the PJB. This study reveals the effect of the herringbone grooved structure on the operational stability of bearings and may provide guidance for the reliability improvement of hydraulic suspension micro-pump. 展开更多
关键词 journal bearing herringbone groove hydrodynamic effect micro-pump
原文传递
Enhanced cellular infiltration of tissue-engineered scaffolds fabricated by PLLA nanogrooved microfibers 被引量:2
19
作者 Lei Zhan Lingtian Wang +6 位作者 Jixia Deng Yi Zheng Qinfei Ke Xinrui Yang Xing Zhang Weitao Jia Chen Huang 《Nano Research》 SCIE EI CSCD 2023年第1期1614-1625,共12页
Nanofibers prepared by electrospinning technique are extensively applied as building blocks for tissue-engineered scaffolds because of their high resemblance to natural extracellular matrix(ECM)and the capacity to pro... Nanofibers prepared by electrospinning technique are extensively applied as building blocks for tissue-engineered scaffolds because of their high resemblance to natural extracellular matrix(ECM)and the capacity to provide more cell contacts than microfibers.However,conventional electrospun scaffolds only allow superficial growth of cells in that the size of inter-fiber pores is much smaller than the size of cells.By taking advantage of the positive correlation between fiber diameter and pore size in fibrous materials,we report here a simple method for fabricating poly-L-lactic acid(PLLA)microfiber scaffold with longitudinally aligned nanogrooves on fiber surface.Three-dimensional(3D)and structurally stable PLLA scaffolds with an average pore size of 16μm were successfully acquired when the fiber diameter was 4.22μm.The topographical cues from nanogrooves ensured fast cell adhesion of scaffolds,whilst the large inter-fiber pores enabled sufficient cell infiltration.Moreover,the nanogrooved microfiber scaffold showed improved curative effects of wound healing in a rat skin injury model,making us believe its practical significance in biomedical areas that requires fast cell adhesion and high cell infiltration. 展开更多
关键词 grooved fibers ELECTROSPINNING cell infiltration wound healing tissue engineering
原文传递
Performance optimization of grooved slippers for aero hydraulic pumps 被引量:3
20
作者 Chen Juan Ma Jiming +1 位作者 Li Jia Fu Yongling 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2016年第3期814-823,共10页
A computational fluid dynamics (CFD) simulation method based on 3-D Navier Stokes equation and Arbitrary Lagrangian Eulerian (ALE) method is presented to analyze the grooved slip- per performance of piston pump. T... A computational fluid dynamics (CFD) simulation method based on 3-D Navier Stokes equation and Arbitrary Lagrangian Eulerian (ALE) method is presented to analyze the grooved slip- per performance of piston pump. The moving domain of grooved slipper is transformed into a fixed reference domain by the ALE method, which makes it convenient to take the effects of rotate speed, body force, temperature, and oil viscosity into account. A geometric model to express the complex structure, which covers the orifice of piston and slipper, vented groove and the oil film, is constructed. Corresponding to different oil film thicknesses calculated in light of hydrostatic equilibrium theory and boundary conditions, a set of simulations is conducted in COMSOL to analyze the pump characteristics and effects of geometry (groove width and radius, orifice size) on these characteristics. Furthermore, the mechanics and hydraulics analyses are employed to validate the CFD model, and there is an excellent agreement between simulation and analytical results. The simulation results show that the sealing land radius, orifice size and groove width all dramatically affect the slipper behavior, and an optimum tradeoff among these factors is conducive to optimizing the pump design. 展开更多
关键词 Arbitrary LagrangianEulerian (ALE) Computational fluid dynam-ics (CFD) grooved slipper Hydraulic pump Navier-Stokes equation Performance analysis
原文传递
上一页 1 2 12 下一页 到第
使用帮助 返回顶部