The southern margin of the Gurbantunggut Desert,China,is characterized by alternating layers of aeolian and alluvial deposits.Investigating the characteristics of arenaceous sediment in this area is of significant imp...The southern margin of the Gurbantunggut Desert,China,is characterized by alternating layers of aeolian and alluvial deposits.Investigating the characteristics of arenaceous sediment in this area is of significant importance for understanding the interactive processes of wind and water forces,as well as the provenance of sediment.However,there are relatively few investigations on the characteristics of such sediment at present.In this study,we researched three aeolian-alluvial interactive stratigraphic profiles and different types of surface sediment on the desert-oasis transitional zone of southern margin of the Gurbantunggut Desert.Based on the optically stimulated luminescence(OSL)dating of aeolian sand and analyses of quartz sand grain size and surface micro-texture,we explored the aeolian-alluvial environmental change at southern margin of the desert in Holocene,as well as the provenance of sediment.The results indicated that the grain size characteristics of different types of sediment in the stratigraphic profiles were similar to those of modern dune sand,interdune sand,muddy desert surface soil,and riverbed sand.Their frequency curves were unimodal or bimodal,and cumulative probability curves were two-segment or three-segment,mainly composed of suspension load and saltation load.The quartz sand in the sediment at southern margin of the desert had undergone alternating transformation of various exogenic forces,with short transportation distance and time,and sedimentary environment was relatively humid.In Holocene,southern margin of the desert primarily featured braided river deposits,and during intermittent period of river activity,there were also aeolian deposits such as sand sheet deposits,stabilized dune deposits,and mobile dune deposits.The provenance for Holocene alluvial deposits at southern margin of the desert remains relatively constant,with the debris of the Tianshan Mountains being the primary provenance.Aeolian sand is mainly near-source recharge,which is formed by in situ deposition of fluvial or lacustrine materials in southern margin of the desert transported by wind erosion,and its provenance was still the weathered debris of the Tianshan Mountains.In addition,the sand in interior of the desert may be transported by northwest wind in desert-scale,thus affecting the development of dunes in southern margin of the desert.The results of this study provide a reference for understanding the composition and provenance changes of desert sand in the context of global climate change.展开更多
Objective: To explore the application value of disposable grooved negative pressure drainage tubes in rib fracture incision and internal fixation. Methods: Seventy-five patients admitted to our Department of Trauma Su...Objective: To explore the application value of disposable grooved negative pressure drainage tubes in rib fracture incision and internal fixation. Methods: Seventy-five patients admitted to our Department of Trauma Surgery from June 2022 to April 2024 who underwent rib fracture osteotomy and internal fixation were selected. According to the types of drainage tubes left in the patients after the operation, they were divided into the observation group (35 cases who were left with disposable grooved negative pressure drainage tubes) and the control group (40 cases who were left with closed silicone thoracic drainage tubes). Comparison of chest drainage, pain, postoperative complications, secondary chest penetration rate, drain placement time, hospitalization time, and treatment costs were compared between the two groups. Results: The total postoperative chest drainage volume of the observation group was less than that of the control group (P < 0.05);the degree of pain, the incidence of postoperative complications, and the rate of secondary chest puncture in the observation group were lower than that of the control group three days after the operation (P < 0.05);and the time of drain placement in the observation group was shorter than that of the control group (P < 0.05). Conclusion: The application of disposable grooved negative pressure drainage tubes in rib fracture incision and internal fixation can significantly improve patients’ postoperative pain and discomfort, reduce complications, lower the rate of secondary chest penetration, promote patients’ postoperative recovery, decrease the amount of postoperative chest drainage, and shorten the time of drain placement, which is worthy of clinical promotion and application.展开更多
It is well known that femtosecond laser pulses can easily spontaneously induce deep-subwavelength periodic surface structures on transparent dielectrics but not on non-transparent semiconductors.Nevertheless,in this s...It is well known that femtosecond laser pulses can easily spontaneously induce deep-subwavelength periodic surface structures on transparent dielectrics but not on non-transparent semiconductors.Nevertheless,in this study,we demonstrate that using high-numerical-aperture 800 nm femtosecond laser direct writing with controlled pulse energy and scanning speed in the near-damage-threshold regime,polarization-dependent deep-subwavelength single grooves with linewidths of~180 nm can be controllably prepared on Si.Generally,the single-groove linewidth increases slightly with increase in the pulse energy and decrease in the scanning speed,whereas the single-groove depth significantly increases from~300 nm to~600 nm with decrease in the scanning speed,or even to over 1μm with multi-processing,indicating the characteristics of transverse clamping and longitudinal growth of such deep-subwavelength single grooves.Energy dispersive spectroscopy composition analysis of the near-groove region confirms that single-groove formation tends to be an ultrafast,non-thermal ablation process,and the oxidized deposits near the grooves are easy to clean up.Furthermore,the results,showing both the strong dependence of groove orientation on laser polarization and the occurrence of double-groove structures due to the interference of pre-formed orthogonal grooves,indicate that the extraordinary field enhancement of strong polarization sensitivity in the deep-subwavelength groove plays an important role in single-groove growth with high stability and collimation.展开更多
The dynamics model of a 2-degree-of-freedom deep groove ball bearing is established by incorporating the raceway surface waviness model comprising multiple sinusoidal functions superposition.The model is solved using ...The dynamics model of a 2-degree-of-freedom deep groove ball bearing is established by incorporating the raceway surface waviness model comprising multiple sinusoidal functions superposition.The model is solved using the fourth-order Runge-Kutta method to obtain the vibration characteristics including displacement,velocity,acceleration,and frequency of the bearing.Validation of the model is accomplished through comparison with theoretical vibration frequencies.The influence of the amplitude of waviness of the inner and outer ring raceway surfaces of deep groove ball bearings on the vibration displacement,peak-to-peak vibration displacement and root-mean-square vibration acceleration is analyzed,and the results show that as the amplitude of the inner and outer ring raceway surfaces waviness increases,all the vibration characteristic indexes increase,indicating that the vibration amplitude of the bearings as well as the energy of the waviness-induced shock waveforms increase with the increase of the amplitude of the waviness.展开更多
A rotary swaging machine was applied to fabricating pipe reduction for miniature inner grooved copper tube (MIGCT) heat pipes. Compared with conventional swaging method, the axial feed of the designed rotary swaging...A rotary swaging machine was applied to fabricating pipe reduction for miniature inner grooved copper tube (MIGCT) heat pipes. Compared with conventional swaging method, the axial feed of the designed rotary swaging machine was reached by a constant pushing force. The deformation of grooves in pipe reduced section during rotary swaging was analyzed. The shrinkage and extensibility of pipe reduction were measured and calculated. Furthermore, four aspects, including outer diameter, surface roughness, extensibility and processing time of pipe reduction, which were influenced by the pushing force, were considered. The results show that the tube wall thickness increases gradually along the z-axis at sinking section. However, the outer diameters, surface roughness and micro-cracks at reduced section tend to decrease along the z-axis. Besides, the effect of variation in the pushing force on the extensibility is limited while an increase in the pushing force results in a decrease of surface roughness. Therefore, a large pushing force within the limit is beneficial to pipe reduction manufacturing during rotary swaging process.展开更多
A 0. 1μm SOI grooved gate pMOSFET with 5.6nm gate oxide is fabricated and demonstrated. The groove depth is 180nm. The transfer characteristics and the output characteristics are shown. At Vds = -1. 5V,the drain satu...A 0. 1μm SOI grooved gate pMOSFET with 5.6nm gate oxide is fabricated and demonstrated. The groove depth is 180nm. The transfer characteristics and the output characteristics are shown. At Vds = -1. 5V,the drain saturation current is 380μA and the off-state leakage current is 1.9nA;the sub-threshold slope is 115mV/dec at Vds = -0. 1V and DIBL factor is 70. 7mV/V. The electrical characteristic comparison between the 0.1μm SOI groovedgate pMOSFET and the 0. 1μm bulk grooved gate one with the same process demonstrates that a 0. 1μm SOI grooved gate pMOSFET has better characteristics in current-driving capability and sub-threshold slope.展开更多
In order to improve the efficiency of film cooling, numerical investigation was carried out to study the effects of different film-cooled plates on surface heat transfer. Both grooved and non-grooved surfaces were con...In order to improve the efficiency of film cooling, numerical investigation was carried out to study the effects of different film-cooled plates on surface heat transfer. Both grooved and non-grooved surfaces were concerned. The modeling was per- formed using Fluent software with the adoption of Shear-Stress Transport (SST) k-ωmodel as the turbulence closure. The coolant was supplied by a single film cooling hole with an inclination angle of 30°. The Mach numbers for the coolant flow and the mainstream flow were fixed at 0 and 0.6, respectively. At three blowing ratios of 0.5, 1.0 and 1.5, the aerodynamic behaviour of the mixing process as well as the heat transfer performance of the film cooling were presented. The numerical results were validated using experimental data extracted from a benchmark test. Good agreements between numerical results and the ex- perimental data were observed. For the film cooling efficiency, it shows that both local and laterally averaged cooling effectiveness can be improved by the non-smooth surface at different blowing ratios. Using the grooved surface, the turbulence intensity upon the plate can be reduced notably, and the mixing between the two flows is weakened due to the reduced turbu lence level. The results indicate that the cooling effectiveness of film cooling can be enhanced by applying the grooved surface.展开更多
Dynamic failure and ejection characteristics of a periodic grooved Sn surface under unsupported shock loading are studied using a smoothed particle hydrodynamics method. An "Eiffel Tower" spatial structure is observ...Dynamic failure and ejection characteristics of a periodic grooved Sn surface under unsupported shock loading are studied using a smoothed particle hydrodynamics method. An "Eiffel Tower" spatial structure is observed, which is com- posed of high-speed jet tip, high-density jet slug, longitudinal tensile sparse zone, and complex broken zone between grooves. It is very different from the spike-bubble structure under supported shocks, and has been validated by detonation loading experiments. In comparison with that under supported shocks at the same peak pressure, the high-speed ejecta decreases obviously, whereas the truncated location of ejecta moves towards the interior of the sample and the total mass of ejecta increases due to the vast existence of low-speed broken materials. The shock wave profile determines mainly the total ejection amount, while the variation of V-groove angle will significantly alter the distribution of middle- and high-speed ejecta, and the maximum ejecta velocity has a linear corretation with the groove angle.展开更多
Annular grooved projectiles(AGPs)have drawn ongoing concerns as an advanced penetrator for their excellent anti-rebound capability in impacting metal plates.They could become embedded solidly in the target surface dur...Annular grooved projectiles(AGPs)have drawn ongoing concerns as an advanced penetrator for their excellent anti-rebound capability in impacting metal plates.They could become embedded solidly in the target surface during low-velocity impact.In this investigation,the firm embedding behavior of AGP was observed by impact experiments.Corresponding numerical simulations provided a better understanding of this process.Experimental and numerical results indicated that the firm embedding behavior of AGP was mainly due to the filling-material in the groove rather than the friction between the projectile and target,unlike traditional shape such as conical projectile.According to observation,firm embedding process can generally be subdivided into four stages:initial-cratering stage,groove-filling stage,fillingmaterial failure stage and rebound vibration stage.Moreover,the damage mechanics of target material around crater was obtained through microscopic tests.A comparison of the cross-sectional figures between the experiment and simulation proved that the analysis and the proposed method were reasonable and feasible,which further demonstrated that the firm embedding behavior has application potential in new concept warheads.展开更多
To study the effect of impingement surface geometry, a cavitation erosion experiment was conducted using a submerged cavitating jet rig with hydraulic oil. The test setup comprised a test chamber with a long-orifice n...To study the effect of impingement surface geometry, a cavitation erosion experiment was conducted using a submerged cavitating jet rig with hydraulic oil. The test setup comprised a test chamber with a long-orifice nozzle, a hydraulic pump with an electric motor, hydraulic auxiliaries, including valves, a cooler, a filter, a reservoir, and measuring instruments, including pressure gages and a thermometer. Hexahedral specimens made of aluminum alloy with flat and grooved surfaces and oblique angles were prepared. Hydraulic oil with a viscosity grade of 32 was used at 40°C as the test fluid. The upstream absolute pressure was kept at 10.1 MPa and the cavitation numbers were set at 0.02 - 0.04. The results of this experiment yielded the following conclusions. The mass loss of the grooved specimens did not increase monotonically as the exposure time increased. The standoff distances at the maximum mass loss for the flat and grooved specimens were almost equivalent. The mass loss decreased as the oblique angle increased and the cavitation number increased, regardless of the presence of grooves. The surfaces were eroded in a ring-like region, but the region elongated as the angle increased. For the grooved specimens, the ridges on the ring were eroded, and when the directions of the grooves and the flow matched, the roots and flanks were severely eroded.展开更多
To study the efect of micro-texture on the cutting performance of polyrystalline cubic boron nitide(PCBN)tools,five types of micro-textures(circular pits,eliptical grooves,transverse grooves,composite grooves,and wavy...To study the efect of micro-texture on the cutting performance of polyrystalline cubic boron nitide(PCBN)tools,five types of micro-textures(circular pits,eliptical grooves,transverse grooves,composite grooves,and wavy grooves)were applied to the rake surface of PCBN tools by an optical fber laser marking machine.Through a combination of three dimensional cutting simulations and experiments,the influences of micro-texture on chip-tool contact area,cutting force,chip morphology,shear angle,and surface roughness during the cuting process were analyzed.The results indicated that the chip--tool contact area and cutting force of both non-textured and micro textured tools increased with increasing cutting speed,while the shear angle decreased with increasing cutting speed.The chip-tool contact area and cutting force of the five types of micro-textured tools were smaller than those of the non textured tool The chip-tool contact area and cutting force obtained by the wavy-groove micro textured tool were the smallest.The chip radius produced by the five types of micro-textured tools was smaller than that produced by the non-textured tool,and the chip morphology was more stable.The transverse-groove micro-textured tool had a better chip breaking efect.The chip rnadius generated by the lliptical groove micro textured tool was 0.96 cm,while that generated by the wavy-groove tool varied from 0.55 cm to 1.26 cm.The presence of a micro-texture reduced the surface roughness of the workpiece by 11.73%-56.7%.Under the same cutting conditions,the five types of micro-textured tools gave a smaller chip--tool contact area,cutting force,chip radius,and surface roughness and a larger shear angle than the non-textured tool.In addition,the elliptical groove and wavy-groove micro-textured tools had better cuting performance.展开更多
A novel particle-size conveying model was established to examine the effects of the dimension relationships of the groove depth and particle size on the solids conveying mechanism of the helically grooved feed section...A novel particle-size conveying model was established to examine the effects of the dimension relationships of the groove depth and particle size on the solids conveying mechanism of the helically grooved feed section. In the model, one or two shear interfaces were proposed based on the dimension relationships of the groove depth and particle size, and the solid-plug embedded in the groove and screw channel were divided into two or three layers by the shear interfaces to consider the solids conveying mechanism of each layer by the boundary condition equation for positive conveying. By the particle-size model, the effects of different dimension relationships on the transformation of solids conveying mechanisms between the friction-drag conveying and the positive conveying were discussed and compared with the on-line measuring experimental data. The results showed that the shear interfaces among the solids existed indeed and the dimension relationships determined the conveying mechanism and the throughput of helically grooved extruders, which was well confirmed by the excellent consistence between the predicted and measured data.展开更多
Zhang Y J et al.[Zhang Y J,Zhang Z D,Zhu L Z and Xuan L 2011 Liquid Cryst.38 355] investigated the effects of finite polar anchoring on the azimuthal anchoring energy at a grooved interface,in which polar anchoring wa...Zhang Y J et al.[Zhang Y J,Zhang Z D,Zhu L Z and Xuan L 2011 Liquid Cryst.38 355] investigated the effects of finite polar anchoring on the azimuthal anchoring energy at a grooved interface,in which polar anchoring was isotropic in the local tangent plane of the surface.In this paper,we investigate the effects of both isotropic and anisotropic polar anchoring on the surface anchoring energy in the frame of Fukuda et al.’s theory.The results show that anisotropic polar anchoring strengthens the azimuthal anchoring of grooved surfaces.In the one-elastic-constant approximation(K11 = K22 = K33 = K),the surface-groove-induced azimuthal anchoring energy is entirely consistent with the result of Faetti,and it reduces to the original result of Berreman with an increase in polar anchoring.Moreover,the contribution of the surface-like elastic term to the Rapini-Papoular anchoring energy is zero.展开更多
Aluminum alloy plates were explosively cladded to stainless steel plates with trapezoidal grooves on the mating surface.The process parameters viz,loading ratio,standoff distance and flyer plate thickness were varied ...Aluminum alloy plates were explosively cladded to stainless steel plates with trapezoidal grooves on the mating surface.The process parameters viz,loading ratio,standoff distance and flyer plate thickness were varied based on the Taguchi analogy.The variation in the process parameters alters the kinetic energy dissipation and the deformation work performed at the interface,and dictates the interfacial wave amplitude and the mechanical strength of the dissimilar explosive clad.The optimum level of process parameters for attaining higher tensile and shear strength is computed by signal-to-noise ratio.Further,a mathematical model is developed for calculating tensile and shear strength of the clad,based on the regression analysis using statistical software Minitab-16,and the level of fit is determined by analysis of variance.展开更多
Surface topographies such as micrometric edges and grooves have been widely used to improve neuron outgrowth.However,finding the mechanism of neuron–surface interactions on grooved substrates remains a challenge.In t...Surface topographies such as micrometric edges and grooves have been widely used to improve neuron outgrowth.However,finding the mechanism of neuron–surface interactions on grooved substrates remains a challenge.In this work,PC12 cells and chick forebrain neurons(CFNs)were cultured on grooved and smooth polyacrylonitrile substrates.It was found that CFNs showed a tendency of growing across groove ridges;while PC12 cells were only observed to grow in the longitudinal direction of grooves.To further investigate these observations,a 3D physical model of axonal outgrowth was developed.In this model,axon shafts are simulated as elastic 3D beams,accounting for the axon outgrowth as well as the focal contacts between axons and substrates.Moreover,the bending direction of axon tips during groove ridge crossing is governed by the energy minimization principle.Our physical model predicts that axonal groove ridge crossing is contributed by the bending compliance of axons,caused by lower Young’s modulus and smaller diameters.This work will aid the understanding of the mechanisms involved in axonal alignment and elongation of neurons guided by grooved substrates,and the obtained insights can be used to enhance the design of instructive scaffolds for nerve tissue engineering and regeneration applications.展开更多
This study attempts to analyze the microstructure and interface behavior of aluminum 6061(Al 6061)-Vgrooved stainless steel(SS304)explosive cladding by numerical and experimental methods.Numerical simulation was perfo...This study attempts to analyze the microstructure and interface behavior of aluminum 6061(Al 6061)-Vgrooved stainless steel(SS304)explosive cladding by numerical and experimental methods.Numerical simulation was performed by Smoothed Particle Hydrodynamics(SPH)technique,in ANSYS AUTODYN,and the results are correlated with experimental outcome.The machining of V-grooves on the base plate transform the melted layer formed in conventional cladding(without grooves on the base plate)into a smooth undulating interface,for a similar experimental condition.The flyer plate and collision velocities,observed in numerical simulation,are in good agreement to the analytical expectations.The pressure developed in the flyer plate is higher than the base plate and the maximum pressure is witnessed at the collision point irrespective of grooved base plate or otherwise.The temperature developed in the collision point of conventional explosive cladding exceeds the melting point of both the participant metals,whereas,it exceeds the melting point of aluminum alone,in case of V-grooved base plate cladding.The shear and impact strengths of the V-grooved base plate clads are higher than the conventional clads and the fracture surfaces exhibit mixed modes of fracture.展开更多
A systematic account of micro-textures and a few compositional profiles of plagioclase from high-alumina basaltic aa lava erupted during the year 1994-1995, from Barren Island Volcano, NE India ocean, are presented fo...A systematic account of micro-textures and a few compositional profiles of plagioclase from high-alumina basaltic aa lava erupted during the year 1994-1995, from Barren Island Volcano, NE India ocean, are presented for the first time. The identified micro-textures can be grouped into two categories: (i) Growth related textures in the form of coarse/fine-sieve morphology, fine-scale oscillatory zoning and resorption surfaces resulted when the equilibrium at the crystal-melt interface was fluctuated due to change in temperature or H20 or pressure or composition of the crystallizing melt; and (ii) morphological texture, like glomerocryst, synneusis, swallow-tailed crystal, microlite and broken crystals, formed by the influence of dynamic behavior of the crystallizing magma (convection, turbulence, degassing, etc.). Each micro-texture has developed in a specific magmatic environment, accordingly, a first order magma plumbing model and crystallization dynamics are envisaged for the studied lava unit. Magma generated has undergone extensive fractional crystallization of An-rich plagioclase in stable magmatic environment at a deeper depth. Subsequently they ascend to a shallow chamber where the newly brought crystals and pre-existing crystals have undergone dynamic crystallization via dissolution-regrowth processes in a convective self- mixing environment. Such repeated recharge-recycling processes have produced various populations of plagioclase with different micro-textural stratigraphy in the studied lava unit. Intermittent degassing and eruption related decompression have also played a major role in the final stage of crystallization dynamics.展开更多
A mathematical model was developed to predict the maximum heat transfer capacity of high temperature heat pipe with triangular grooved wick. The effects of the inclination angle and geometry structure were considered ...A mathematical model was developed to predict the maximum heat transfer capacity of high temperature heat pipe with triangular grooved wick. The effects of the inclination angle and geometry structure were considered in the proposed model.Maximum heat transfer capacity was also investigated experimentally. The model was validated by comparing with the experimental results. The maximum heat transfer capacity increases with the vapor core radius increasing. Compared with the inclination angle of0°, the maximum heat transfer capacity increases at the larger inclination angle, and the change with temperature is larger. The performance of heat pipe with triangular grooved wick is greatly influenced by gravity, so it is not recommended to be applied to the dish solar heat pipe receiver.展开更多
Heat exchangers are integral parts of important industrial units such as petrochemicals,medicine and power plants.Due to the importance of systems energy consumption,different modifications have been applied on heat e...Heat exchangers are integral parts of important industrial units such as petrochemicals,medicine and power plants.Due to the importance of systems energy consumption,different modifications have been applied on heat exchangers in terms of size and structure.In this study,a novel heat exchanger with helically grooved annulus shell and helically coiled tube was investigated by numerical simulation.Helically grooves with the same pitch of the helical coil tube and different depth are created on the inner and outer wall of annulus shell to improve the thermal performance of heat exchanger.In the first section,thermal performance of the shell and coil heat exchanger with the helical grooves on its outer shell wall was compared with same but without helical grooves.At the second section,helically grooves created on both outer and inner wall of the annulus shell with different groove depths.The results showed that the heat exchanger with grooves on both inner and outer shell wall has better thermal performance up to 20%compared to the heat exchanger with grooves on only outer shell wall.The highest thermal performance achieves at lower flow rates and higher groove depths whereas the pressure drop did not increase significantly.展开更多
We have investigated experimentally the process of a droplet impact on a regular micro-grooved surface. The target surfaces are patterned such that micro-scale spokes radiate from the center, concentric circles, and p...We have investigated experimentally the process of a droplet impact on a regular micro-grooved surface. The target surfaces are patterned such that micro-scale spokes radiate from the center, concentric circles, and parallel lines on the polishing copper plate, using Quasi-LIGA molding technology. The dynamic behavior of water droplets impacting on these structured surfaces is examined using a high-speed camera, including the drop impact processes, the maximum spreading diameters, and the lengths and numbers of fingers at different values of Weber number. Experimental results validate that the spreading processes are arrested on all target surfaces at low velocity. Also, the experimental results at higher impact velocity demonstrate that the spreading process is conducted on the surface parallel to the micro-grooves, but is arrested in the direction perpendicular to the micro-grooves. Besides, the lengths of fingers increase observably, even when they are ejected out as tiny droplets along the groove direction, at the same time the drop recoil velocity is reduced by micro-grooves which are parallel to the spreading direction, but not by micro-grooves which are vertical to the spreading direction.展开更多
基金the National Natural Science Foundation of China(42071011)the 2023 Annual Postgraduate Research and Innovation Foundation of Fujian Normal University,China.
文摘The southern margin of the Gurbantunggut Desert,China,is characterized by alternating layers of aeolian and alluvial deposits.Investigating the characteristics of arenaceous sediment in this area is of significant importance for understanding the interactive processes of wind and water forces,as well as the provenance of sediment.However,there are relatively few investigations on the characteristics of such sediment at present.In this study,we researched three aeolian-alluvial interactive stratigraphic profiles and different types of surface sediment on the desert-oasis transitional zone of southern margin of the Gurbantunggut Desert.Based on the optically stimulated luminescence(OSL)dating of aeolian sand and analyses of quartz sand grain size and surface micro-texture,we explored the aeolian-alluvial environmental change at southern margin of the desert in Holocene,as well as the provenance of sediment.The results indicated that the grain size characteristics of different types of sediment in the stratigraphic profiles were similar to those of modern dune sand,interdune sand,muddy desert surface soil,and riverbed sand.Their frequency curves were unimodal or bimodal,and cumulative probability curves were two-segment or three-segment,mainly composed of suspension load and saltation load.The quartz sand in the sediment at southern margin of the desert had undergone alternating transformation of various exogenic forces,with short transportation distance and time,and sedimentary environment was relatively humid.In Holocene,southern margin of the desert primarily featured braided river deposits,and during intermittent period of river activity,there were also aeolian deposits such as sand sheet deposits,stabilized dune deposits,and mobile dune deposits.The provenance for Holocene alluvial deposits at southern margin of the desert remains relatively constant,with the debris of the Tianshan Mountains being the primary provenance.Aeolian sand is mainly near-source recharge,which is formed by in situ deposition of fluvial or lacustrine materials in southern margin of the desert transported by wind erosion,and its provenance was still the weathered debris of the Tianshan Mountains.In addition,the sand in interior of the desert may be transported by northwest wind in desert-scale,thus affecting the development of dunes in southern margin of the desert.The results of this study provide a reference for understanding the composition and provenance changes of desert sand in the context of global climate change.
文摘Objective: To explore the application value of disposable grooved negative pressure drainage tubes in rib fracture incision and internal fixation. Methods: Seventy-five patients admitted to our Department of Trauma Surgery from June 2022 to April 2024 who underwent rib fracture osteotomy and internal fixation were selected. According to the types of drainage tubes left in the patients after the operation, they were divided into the observation group (35 cases who were left with disposable grooved negative pressure drainage tubes) and the control group (40 cases who were left with closed silicone thoracic drainage tubes). Comparison of chest drainage, pain, postoperative complications, secondary chest penetration rate, drain placement time, hospitalization time, and treatment costs were compared between the two groups. Results: The total postoperative chest drainage volume of the observation group was less than that of the control group (P < 0.05);the degree of pain, the incidence of postoperative complications, and the rate of secondary chest puncture in the observation group were lower than that of the control group three days after the operation (P < 0.05);and the time of drain placement in the observation group was shorter than that of the control group (P < 0.05). Conclusion: The application of disposable grooved negative pressure drainage tubes in rib fracture incision and internal fixation can significantly improve patients’ postoperative pain and discomfort, reduce complications, lower the rate of secondary chest penetration, promote patients’ postoperative recovery, decrease the amount of postoperative chest drainage, and shorten the time of drain placement, which is worthy of clinical promotion and application.
基金Project supported by the Natural Science Foundation of Guangdong Province (Grant No.2021A1515012335)the National Natural Science Foundation of China (Grant No.11274400)+2 种基金Pearl River S&T Nova Program of Guangzhou (Grant No.201506010059)State Key Laboratory of High Field Laser Physics (Shanghai Institute of Optics and Fine Mechanics)State Key Laboratory of Optoelectronic Materials and Technologies (Sun Yat-Sen University)。
文摘It is well known that femtosecond laser pulses can easily spontaneously induce deep-subwavelength periodic surface structures on transparent dielectrics but not on non-transparent semiconductors.Nevertheless,in this study,we demonstrate that using high-numerical-aperture 800 nm femtosecond laser direct writing with controlled pulse energy and scanning speed in the near-damage-threshold regime,polarization-dependent deep-subwavelength single grooves with linewidths of~180 nm can be controllably prepared on Si.Generally,the single-groove linewidth increases slightly with increase in the pulse energy and decrease in the scanning speed,whereas the single-groove depth significantly increases from~300 nm to~600 nm with decrease in the scanning speed,or even to over 1μm with multi-processing,indicating the characteristics of transverse clamping and longitudinal growth of such deep-subwavelength single grooves.Energy dispersive spectroscopy composition analysis of the near-groove region confirms that single-groove formation tends to be an ultrafast,non-thermal ablation process,and the oxidized deposits near the grooves are easy to clean up.Furthermore,the results,showing both the strong dependence of groove orientation on laser polarization and the occurrence of double-groove structures due to the interference of pre-formed orthogonal grooves,indicate that the extraordinary field enhancement of strong polarization sensitivity in the deep-subwavelength groove plays an important role in single-groove growth with high stability and collimation.
文摘The dynamics model of a 2-degree-of-freedom deep groove ball bearing is established by incorporating the raceway surface waviness model comprising multiple sinusoidal functions superposition.The model is solved using the fourth-order Runge-Kutta method to obtain the vibration characteristics including displacement,velocity,acceleration,and frequency of the bearing.Validation of the model is accomplished through comparison with theoretical vibration frequencies.The influence of the amplitude of waviness of the inner and outer ring raceway surfaces of deep groove ball bearings on the vibration displacement,peak-to-peak vibration displacement and root-mean-square vibration acceleration is analyzed,and the results show that as the amplitude of the inner and outer ring raceway surfaces waviness increases,all the vibration characteristic indexes increase,indicating that the vibration amplitude of the bearings as well as the energy of the waviness-induced shock waveforms increase with the increase of the amplitude of the waviness.
基金Project (U0834002) supported by the Key Program of NSFC Guangdong Joint Funds of ChinaProjects (51005079, 20976055) supported by the National Natural Science Foundation of China+1 种基金Project (10451064101005146) supported by the Natural Science Foundation of Guangdong Province, ChinaProject (20100172120001) supported by Specialized Research Fund for the Doctoral Program of Higher Education, China
文摘A rotary swaging machine was applied to fabricating pipe reduction for miniature inner grooved copper tube (MIGCT) heat pipes. Compared with conventional swaging method, the axial feed of the designed rotary swaging machine was reached by a constant pushing force. The deformation of grooves in pipe reduced section during rotary swaging was analyzed. The shrinkage and extensibility of pipe reduction were measured and calculated. Furthermore, four aspects, including outer diameter, surface roughness, extensibility and processing time of pipe reduction, which were influenced by the pushing force, were considered. The results show that the tube wall thickness increases gradually along the z-axis at sinking section. However, the outer diameters, surface roughness and micro-cracks at reduced section tend to decrease along the z-axis. Besides, the effect of variation in the pushing force on the extensibility is limited while an increase in the pushing force results in a decrease of surface roughness. Therefore, a large pushing force within the limit is beneficial to pipe reduction manufacturing during rotary swaging process.
文摘A 0. 1μm SOI grooved gate pMOSFET with 5.6nm gate oxide is fabricated and demonstrated. The groove depth is 180nm. The transfer characteristics and the output characteristics are shown. At Vds = -1. 5V,the drain saturation current is 380μA and the off-state leakage current is 1.9nA;the sub-threshold slope is 115mV/dec at Vds = -0. 1V and DIBL factor is 70. 7mV/V. The electrical characteristic comparison between the 0.1μm SOI groovedgate pMOSFET and the 0. 1μm bulk grooved gate one with the same process demonstrates that a 0. 1μm SOI grooved gate pMOSFET has better characteristics in current-driving capability and sub-threshold slope.
文摘In order to improve the efficiency of film cooling, numerical investigation was carried out to study the effects of different film-cooled plates on surface heat transfer. Both grooved and non-grooved surfaces were concerned. The modeling was per- formed using Fluent software with the adoption of Shear-Stress Transport (SST) k-ωmodel as the turbulence closure. The coolant was supplied by a single film cooling hole with an inclination angle of 30°. The Mach numbers for the coolant flow and the mainstream flow were fixed at 0 and 0.6, respectively. At three blowing ratios of 0.5, 1.0 and 1.5, the aerodynamic behaviour of the mixing process as well as the heat transfer performance of the film cooling were presented. The numerical results were validated using experimental data extracted from a benchmark test. Good agreements between numerical results and the ex- perimental data were observed. For the film cooling efficiency, it shows that both local and laterally averaged cooling effectiveness can be improved by the non-smooth surface at different blowing ratios. Using the grooved surface, the turbulence intensity upon the plate can be reduced notably, and the mixing between the two flows is weakened due to the reduced turbu lence level. The results indicate that the cooling effectiveness of film cooling can be enhanced by applying the grooved surface.
基金Project supported by the Joint Fund of the National Natural Science Foundation of China and the China Academy of Engineering Physics(Grant No.U1530261)the National Natural Science Foundation of China(Grant Nos.11402032 and 11502030)the Science Challenge Project,China(Grant No.TZ2016001)
文摘Dynamic failure and ejection characteristics of a periodic grooved Sn surface under unsupported shock loading are studied using a smoothed particle hydrodynamics method. An "Eiffel Tower" spatial structure is observed, which is com- posed of high-speed jet tip, high-density jet slug, longitudinal tensile sparse zone, and complex broken zone between grooves. It is very different from the spike-bubble structure under supported shocks, and has been validated by detonation loading experiments. In comparison with that under supported shocks at the same peak pressure, the high-speed ejecta decreases obviously, whereas the truncated location of ejecta moves towards the interior of the sample and the total mass of ejecta increases due to the vast existence of low-speed broken materials. The shock wave profile determines mainly the total ejection amount, while the variation of V-groove angle will significantly alter the distribution of middle- and high-speed ejecta, and the maximum ejecta velocity has a linear corretation with the groove angle.
基金financially supported by the National Natural Science Foundation of China [grant number 11472053]
文摘Annular grooved projectiles(AGPs)have drawn ongoing concerns as an advanced penetrator for their excellent anti-rebound capability in impacting metal plates.They could become embedded solidly in the target surface during low-velocity impact.In this investigation,the firm embedding behavior of AGP was observed by impact experiments.Corresponding numerical simulations provided a better understanding of this process.Experimental and numerical results indicated that the firm embedding behavior of AGP was mainly due to the filling-material in the groove rather than the friction between the projectile and target,unlike traditional shape such as conical projectile.According to observation,firm embedding process can generally be subdivided into four stages:initial-cratering stage,groove-filling stage,fillingmaterial failure stage and rebound vibration stage.Moreover,the damage mechanics of target material around crater was obtained through microscopic tests.A comparison of the cross-sectional figures between the experiment and simulation proved that the analysis and the proposed method were reasonable and feasible,which further demonstrated that the firm embedding behavior has application potential in new concept warheads.
文摘To study the effect of impingement surface geometry, a cavitation erosion experiment was conducted using a submerged cavitating jet rig with hydraulic oil. The test setup comprised a test chamber with a long-orifice nozzle, a hydraulic pump with an electric motor, hydraulic auxiliaries, including valves, a cooler, a filter, a reservoir, and measuring instruments, including pressure gages and a thermometer. Hexahedral specimens made of aluminum alloy with flat and grooved surfaces and oblique angles were prepared. Hydraulic oil with a viscosity grade of 32 was used at 40°C as the test fluid. The upstream absolute pressure was kept at 10.1 MPa and the cavitation numbers were set at 0.02 - 0.04. The results of this experiment yielded the following conclusions. The mass loss of the grooved specimens did not increase monotonically as the exposure time increased. The standoff distances at the maximum mass loss for the flat and grooved specimens were almost equivalent. The mass loss decreased as the oblique angle increased and the cavitation number increased, regardless of the presence of grooves. The surfaces were eroded in a ring-like region, but the region elongated as the angle increased. For the grooved specimens, the ridges on the ring were eroded, and when the directions of the grooves and the flow matched, the roots and flanks were severely eroded.
基金the Basic Scientific Research Program of the Educational Commission of Liaoning Province,China(Grant No.L2017LQN024).
文摘To study the efect of micro-texture on the cutting performance of polyrystalline cubic boron nitide(PCBN)tools,five types of micro-textures(circular pits,eliptical grooves,transverse grooves,composite grooves,and wavy grooves)were applied to the rake surface of PCBN tools by an optical fber laser marking machine.Through a combination of three dimensional cutting simulations and experiments,the influences of micro-texture on chip-tool contact area,cutting force,chip morphology,shear angle,and surface roughness during the cuting process were analyzed.The results indicated that the chip--tool contact area and cutting force of both non-textured and micro textured tools increased with increasing cutting speed,while the shear angle decreased with increasing cutting speed.The chip-tool contact area and cutting force of the five types of micro-textured tools were smaller than those of the non textured tool The chip-tool contact area and cutting force obtained by the wavy-groove micro textured tool were the smallest.The chip radius produced by the five types of micro-textured tools was smaller than that produced by the non-textured tool,and the chip morphology was more stable.The transverse-groove micro-textured tool had a better chip breaking efect.The chip rnadius generated by the lliptical groove micro textured tool was 0.96 cm,while that generated by the wavy-groove tool varied from 0.55 cm to 1.26 cm.The presence of a micro-texture reduced the surface roughness of the workpiece by 11.73%-56.7%.Under the same cutting conditions,the five types of micro-textured tools gave a smaller chip--tool contact area,cutting force,chip radius,and surface roughness and a larger shear angle than the non-textured tool.In addition,the elliptical groove and wavy-groove micro-textured tools had better cuting performance.
基金Funded by the National Natural Science Foundation of China(No.50873014)
文摘A novel particle-size conveying model was established to examine the effects of the dimension relationships of the groove depth and particle size on the solids conveying mechanism of the helically grooved feed section. In the model, one or two shear interfaces were proposed based on the dimension relationships of the groove depth and particle size, and the solid-plug embedded in the groove and screw channel were divided into two or three layers by the shear interfaces to consider the solids conveying mechanism of each layer by the boundary condition equation for positive conveying. By the particle-size model, the effects of different dimension relationships on the transformation of solids conveying mechanisms between the friction-drag conveying and the positive conveying were discussed and compared with the on-line measuring experimental data. The results showed that the shear interfaces among the solids existed indeed and the dimension relationships determined the conveying mechanism and the throughput of helically grooved extruders, which was well confirmed by the excellent consistence between the predicted and measured data.
基金Project supported by the Natural Science Foundation of Hebei Province,China (Grant No. A2010000004)the National Natural Science Foundation of China (Grant No. 60736042)the Key Subject Construction Project of Hebei Provincial University,China
文摘Zhang Y J et al.[Zhang Y J,Zhang Z D,Zhu L Z and Xuan L 2011 Liquid Cryst.38 355] investigated the effects of finite polar anchoring on the azimuthal anchoring energy at a grooved interface,in which polar anchoring was isotropic in the local tangent plane of the surface.In this paper,we investigate the effects of both isotropic and anisotropic polar anchoring on the surface anchoring energy in the frame of Fukuda et al.’s theory.The results show that anisotropic polar anchoring strengthens the azimuthal anchoring of grooved surfaces.In the one-elastic-constant approximation(K11 = K22 = K33 = K),the surface-groove-induced azimuthal anchoring energy is entirely consistent with the result of Faetti,and it reduces to the original result of Berreman with an increase in polar anchoring.Moreover,the contribution of the surface-like elastic term to the Rapini-Papoular anchoring energy is zero.
文摘Aluminum alloy plates were explosively cladded to stainless steel plates with trapezoidal grooves on the mating surface.The process parameters viz,loading ratio,standoff distance and flyer plate thickness were varied based on the Taguchi analogy.The variation in the process parameters alters the kinetic energy dissipation and the deformation work performed at the interface,and dictates the interfacial wave amplitude and the mechanical strength of the dissimilar explosive clad.The optimum level of process parameters for attaining higher tensile and shear strength is computed by signal-to-noise ratio.Further,a mathematical model is developed for calculating tensile and shear strength of the clad,based on the regression analysis using statistical software Minitab-16,and the level of fit is determined by analysis of variance.
基金This study was partially supported by the National Key Research and Development Program of China(Grant No.2018YFA0703000)the Key Research and Development Program of Zhejiang Province(Grant No.2017C01063)+2 种基金the Science Fund for Creative Research Groups of the National Natural Science Foundation of China(Grant No.51821093)the National Natural Science Foundation of China(Grant Nos.U1609207,11672268)ZJU Scholarship for Outstanding Doctoral Candidates and Scholarship Program supported by China Scholarship Council(No.201906320187).
文摘Surface topographies such as micrometric edges and grooves have been widely used to improve neuron outgrowth.However,finding the mechanism of neuron–surface interactions on grooved substrates remains a challenge.In this work,PC12 cells and chick forebrain neurons(CFNs)were cultured on grooved and smooth polyacrylonitrile substrates.It was found that CFNs showed a tendency of growing across groove ridges;while PC12 cells were only observed to grow in the longitudinal direction of grooves.To further investigate these observations,a 3D physical model of axonal outgrowth was developed.In this model,axon shafts are simulated as elastic 3D beams,accounting for the axon outgrowth as well as the focal contacts between axons and substrates.Moreover,the bending direction of axon tips during groove ridge crossing is governed by the energy minimization principle.Our physical model predicts that axonal groove ridge crossing is contributed by the bending compliance of axons,caused by lower Young’s modulus and smaller diameters.This work will aid the understanding of the mechanisms involved in axonal alignment and elongation of neurons guided by grooved substrates,and the obtained insights can be used to enhance the design of instructive scaffolds for nerve tissue engineering and regeneration applications.
文摘This study attempts to analyze the microstructure and interface behavior of aluminum 6061(Al 6061)-Vgrooved stainless steel(SS304)explosive cladding by numerical and experimental methods.Numerical simulation was performed by Smoothed Particle Hydrodynamics(SPH)technique,in ANSYS AUTODYN,and the results are correlated with experimental outcome.The machining of V-grooves on the base plate transform the melted layer formed in conventional cladding(without grooves on the base plate)into a smooth undulating interface,for a similar experimental condition.The flyer plate and collision velocities,observed in numerical simulation,are in good agreement to the analytical expectations.The pressure developed in the flyer plate is higher than the base plate and the maximum pressure is witnessed at the collision point irrespective of grooved base plate or otherwise.The temperature developed in the collision point of conventional explosive cladding exceeds the melting point of both the participant metals,whereas,it exceeds the melting point of aluminum alone,in case of V-grooved base plate cladding.The shear and impact strengths of the V-grooved base plate clads are higher than the conventional clads and the fracture surfaces exhibit mixed modes of fracture.
文摘A systematic account of micro-textures and a few compositional profiles of plagioclase from high-alumina basaltic aa lava erupted during the year 1994-1995, from Barren Island Volcano, NE India ocean, are presented for the first time. The identified micro-textures can be grouped into two categories: (i) Growth related textures in the form of coarse/fine-sieve morphology, fine-scale oscillatory zoning and resorption surfaces resulted when the equilibrium at the crystal-melt interface was fluctuated due to change in temperature or H20 or pressure or composition of the crystallizing melt; and (ii) morphological texture, like glomerocryst, synneusis, swallow-tailed crystal, microlite and broken crystals, formed by the influence of dynamic behavior of the crystallizing magma (convection, turbulence, degassing, etc.). Each micro-texture has developed in a specific magmatic environment, accordingly, a first order magma plumbing model and crystallization dynamics are envisaged for the studied lava unit. Magma generated has undergone extensive fractional crystallization of An-rich plagioclase in stable magmatic environment at a deeper depth. Subsequently they ascend to a shallow chamber where the newly brought crystals and pre-existing crystals have undergone dynamic crystallization via dissolution-regrowth processes in a convective self- mixing environment. Such repeated recharge-recycling processes have produced various populations of plagioclase with different micro-textural stratigraphy in the studied lava unit. Intermittent degassing and eruption related decompression have also played a major role in the final stage of crystallization dynamics.
基金Project(51076062)supported by the National Natural Science Foundation of China
文摘A mathematical model was developed to predict the maximum heat transfer capacity of high temperature heat pipe with triangular grooved wick. The effects of the inclination angle and geometry structure were considered in the proposed model.Maximum heat transfer capacity was also investigated experimentally. The model was validated by comparing with the experimental results. The maximum heat transfer capacity increases with the vapor core radius increasing. Compared with the inclination angle of0°, the maximum heat transfer capacity increases at the larger inclination angle, and the change with temperature is larger. The performance of heat pipe with triangular grooved wick is greatly influenced by gravity, so it is not recommended to be applied to the dish solar heat pipe receiver.
文摘Heat exchangers are integral parts of important industrial units such as petrochemicals,medicine and power plants.Due to the importance of systems energy consumption,different modifications have been applied on heat exchangers in terms of size and structure.In this study,a novel heat exchanger with helically grooved annulus shell and helically coiled tube was investigated by numerical simulation.Helically grooves with the same pitch of the helical coil tube and different depth are created on the inner and outer wall of annulus shell to improve the thermal performance of heat exchanger.In the first section,thermal performance of the shell and coil heat exchanger with the helical grooves on its outer shell wall was compared with same but without helical grooves.At the second section,helically grooves created on both outer and inner wall of the annulus shell with different groove depths.The results showed that the heat exchanger with grooves on both inner and outer shell wall has better thermal performance up to 20%compared to the heat exchanger with grooves on only outer shell wall.The highest thermal performance achieves at lower flow rates and higher groove depths whereas the pressure drop did not increase significantly.
基金supported by the National Natural Science Foundation of China(Grant No.51109178)the Science and Technology Innovation Foundation of Northwestern Polytechnical University,China(Grant No.JC20120218)
文摘We have investigated experimentally the process of a droplet impact on a regular micro-grooved surface. The target surfaces are patterned such that micro-scale spokes radiate from the center, concentric circles, and parallel lines on the polishing copper plate, using Quasi-LIGA molding technology. The dynamic behavior of water droplets impacting on these structured surfaces is examined using a high-speed camera, including the drop impact processes, the maximum spreading diameters, and the lengths and numbers of fingers at different values of Weber number. Experimental results validate that the spreading processes are arrested on all target surfaces at low velocity. Also, the experimental results at higher impact velocity demonstrate that the spreading process is conducted on the surface parallel to the micro-grooves, but is arrested in the direction perpendicular to the micro-grooves. Besides, the lengths of fingers increase observably, even when they are ejected out as tiny droplets along the groove direction, at the same time the drop recoil velocity is reduced by micro-grooves which are parallel to the spreading direction, but not by micro-grooves which are vertical to the spreading direction.