Selecting H-60 PVC foam, four-axis E-glass non-woven fabric and vinyl resin, a type of innovative reinforced sandwich composite as grooved perforation sandwich (GPS) were fabricated by VIMP. The interfacial structur...Selecting H-60 PVC foam, four-axis E-glass non-woven fabric and vinyl resin, a type of innovative reinforced sandwich composite as grooved perforation sandwich (GPS) were fabricated by VIMP. The interfacial structure between the face and core of the sandwich is innovative because of the acuminate grooves in both sides of foam core and the holes perforated along core’s height. The fabrication results show that VIMP is a high-speed and cost-effective manufacturing method. The mechanical properties of the reinforced foam core were tested. The typical flexural failure modes of sandwich specimens were observed. The flexural stiffness and ultimate bearing capacity of sandwich were studied by ordinary sandwich beam theory and finite element method.展开更多
基金Funded by the Special Prophase Project on Basic Research of The Na-tional Department of Scientific and Technology(No. 2008CB617613)the National Natural Science Foundation of China (No. 50978134)the Research Award Fund for Young Teachers of Nanjing University of Technology
文摘Selecting H-60 PVC foam, four-axis E-glass non-woven fabric and vinyl resin, a type of innovative reinforced sandwich composite as grooved perforation sandwich (GPS) were fabricated by VIMP. The interfacial structure between the face and core of the sandwich is innovative because of the acuminate grooves in both sides of foam core and the holes perforated along core’s height. The fabrication results show that VIMP is a high-speed and cost-effective manufacturing method. The mechanical properties of the reinforced foam core were tested. The typical flexural failure modes of sandwich specimens were observed. The flexural stiffness and ultimate bearing capacity of sandwich were studied by ordinary sandwich beam theory and finite element method.