With the rapid development of expressway in China, the ground improvement is becoming more and more important. The decision of the ground improvement method often depends on the experience of an engineer. This paper s...With the rapid development of expressway in China, the ground improvement is becoming more and more important. The decision of the ground improvement method often depends on the experience of an engineer. This paper sets up a module of multi-level fuzzy decision of the ground improvement method in the expressway construction which is mainly to set up multi-level structure module, to get value of the affected factors at rule level and index level, to set up the character index matrix of project level and to have a total evaluation on the projects. Combined with the project of ground improvement on the Second Cincture Road in Wuhan, a case study is carried out with satisfactory results.展开更多
Urbanization is the physical growth of urban areas as a result of global change. As the land cost is increasing tremendously and decreasing availability of good construction site is building up pressure on the enginee...Urbanization is the physical growth of urban areas as a result of global change. As the land cost is increasing tremendously and decreasing availability of good construction site is building up pressure on the engineers to utilize even the poorest site either by providing special type of foundation or by improving ground in urban centres. In this context literature is reviewed for use of landfill site for housing. The site exploration for old dump site was carried out to assess subsoil characteristics. The objective was to evolve strategy for economical feasible ground improvement technique to obtain permissible bearing capacity of 150 kPa and total settlement not more than 50 mm. The tests carried out are load tests with geotextile mat and stone filled wire mess matress. The analysis was attempted to evaluate the soil response and bearing capacity. The site can be used for construction of low rise housing for rehabilitation of displaced persons under TP scheme within city area utilizing old landfill sites.展开更多
This study focuses on the consolidation behavior and mathematical interpretation of partially-saturated ground improved by impervious column inclusion.The constitutive relations for soil skeleton,pore air and pore wat...This study focuses on the consolidation behavior and mathematical interpretation of partially-saturated ground improved by impervious column inclusion.The constitutive relations for soil skeleton,pore air and pore water for partially saturated soils are proposed in the context of partially-saturated ground improved by impervious column inclusion.Settlement equation and dissipation equations of excess pore air/water pressures for a partially saturated improved ground are then derived.The semi-analytical solutions for ground settlement and pore pressure dissipation are then obtained through the Laplace transform and validated by the existing solutions for two special cases in the literature and the numerical results obtained from the finite difference method.A series of parametric studies is finally conducted to investigate the influence of some key factors on consolidation of partially saturated ground improved by impervious column inclusion.Based on the parametric study,it can be found that a higher value of the area replacement ratio or modulus of the pile results in a longer dissipation time of excess pore air pressure(PAP),a shorter dissipation time of excess pore water pressure(PWP),and a lower normalized settlement.展开更多
Support vehicles are part of the main body of airport ground operations,and their scheduling efficiency directly impacts flight delays.A mathematical model is constructed and the responsiveness of support vehicles for...Support vehicles are part of the main body of airport ground operations,and their scheduling efficiency directly impacts flight delays.A mathematical model is constructed and the responsiveness of support vehicles for current operational demands is proposed to study optimization algorithms for vehicle scheduling.The model is based on the constraint relationship of the initial operation time,time window,and gate position distribution,which gives an improvement to the ant colony algorithm(ACO).The impacts of the improved ACO as used for support vehicle optimization are compared and analyzed.The results show that the scheduling scheme of refueling trucks based on the improved ACO can reduce flight delays caused by refueling operations by 56.87%,indicating the improved ACO can improve support vehicle scheduling.Besides,the improved ACO can jump out of local optima,which can balance the working time of refueling trucks.This research optimizes the scheduling scheme of support vehicles under the existing conditions of airports,which has practical significance to fully utilize ground service resources,improve the efficiency of airport ground operations,and effectively reduce flight delays caused by ground service support.展开更多
A highway was constructed in Jiangxi Province, China, through mountainous area. Some sections of the highway went through valleys where a soft clay layer of 6,8.5 m deep was encountered. A new explosive method was dev...A highway was constructed in Jiangxi Province, China, through mountainous area. Some sections of the highway went through valleys where a soft clay layer of 6,8.5 m deep was encountered. A new explosive method was developed and adopted for this project. In this method, blasting is used to remove and replace soft clay with crushed stones. Explosive charges are placed in the soil to be improved according to a certain pattern. Crushed stones are piled up behind the area where charges are installed. The explosion removes most of the soil in the exploded area and causes the pile of crushed stones to slide into the area where the soil is removed by blasting. A formular was suggested to calculate the charge weight used for improving a certain type of soil. The effectiveness of the method is evaluated using borehole exploration, plate load tests,and ground-probing radar tests.展开更多
Sand Compaction Piles(SCP)commonly known as Sand Columns(SC)now has been vastly used for reinforcing the range of soft soils.The installation of sand columns results in enhancing the ultimate bearing capacity of soft ...Sand Compaction Piles(SCP)commonly known as Sand Columns(SC)now has been vastly used for reinforcing the range of soft soils.The installation of sand columns results in enhancing the ultimate bearing capacity of soft soil,increase the rate of consolidation,prevention of liquefaction in loose sandy soils and provide lateral resistance against the horizontal movement.This research aims at investigating the effects of floating columns in clayey soil with silty deposits by developing small scale laboratory models.The laboratory tests were conducted on a circular column of 37 mm diameter and results of the treated ground are compared to the untreated ground.The effects of sand columns on soils of different shear strengths(low-medium-high),slenderness ratio(L/D)of columns and different loading pattern are investigated.Group effect was also investigated by varying the spacing between the columns.The equivalent entire area of test model was loaded to determine the stiffness of composite ground and axial capacity of sand column was determined by loading the column area alone.Based on current study,it was concluded that sand column can significantly enhance the engineering properties of soft clayey soil.Also,the group effect was studied and it was concluded that by increasing the spacing between the columns,the group efficiency decreases.The axial capacity of sand columns decreases while increasing the spacing between the columns.展开更多
The utilization of stone columns has emerged as a popular ground improvement strategy,whereas the drainage performance can be adversely hampered by clogging effect.Despite the ample progress of calculation methods for...The utilization of stone columns has emerged as a popular ground improvement strategy,whereas the drainage performance can be adversely hampered by clogging effect.Despite the ample progress of calculation methods for the consolidation of stone column-improved ground,theoretical investigations into the clogging effect have not been thoroughly explored.Furthermore,it is imperative to involve the column consolidation deformation to mitigate computational error on the consolidation of composite ground with high replacement ratios.In this context,an analytical model accounting for the initial clogging and coupled time and depth-dependent clogging of stone columns is established.Then,the resulting governing equations and analytical solutions are obtained under a new flow continuity relationship to incorporate column consolidation deformation.The accuracy and reliability of the proposed model are illustrated by degradation analysis and case studies with good agreements.Subsequently,the computed results of the current study are juxtaposed against the existing models,and an in-depth assessment of the impacts of several crucial parameters on the consolidation behavior is conducted.The results reveal that ignoring column consolidation deformation leads to an overestimate of the consolidation rate,with maximum error reaching up to 16%as the replacement ratio increases.Furthermore,the initial clogging also has a significant influence on the consolidation performance.Additionally,the increment of depth and time-clogging factors a and b will induce a noticeable retardation of the consolidation process,particularly in the later stage.展开更多
Abutment piles in soft ground may be subjected to both vertical and horizontal soil movements resulting from approach embankment loads. To constrain the soil movements, the soft soil ground beneath the approach embank...Abutment piles in soft ground may be subjected to both vertical and horizontal soil movements resulting from approach embankment loads. To constrain the soil movements, the soft soil ground beneath the approach embankment is often improved using composite pile foundations, which aim at mitigating the bump induced by high-speed trains passing through the bridge. So far, there is limited literature on exploring the influence of the degree of ground improvement on abutment piles installed in soft soil grounds. In this paper, a series of three-dimensional (3D) centrifuge model tests was performed on an approach embankment over a silty clay deposit improved by cement-fly ash-gravel (CFG) piles combined with geogrid. Emphasis is placed on the effects of ground replacement ratio (m) on the responses of the abutment piles induced by embankment loads. Meanwhile, a numerical study was conducted with varying ground replacement ratio of the pile-reinforced grounds. Results show that the performance of the abutment piles is significantly improved when reinforcing the ground with CFG piles beneath the approach embankment. Interestingly, there is a threshold value of the replacement ratio of around 4.9% above which the effect of CFG pile foundations is limited. This implies that it is essential to optimize the ground improvement for having a cost-effective design while minimizing the risk of the bump at the end of bridge.展开更多
With the rapid growth of the number and flight time of unmanned aerial vehicles(UAVs),safety accidents caused by UAVs flight risk is increasing gradually.Safe air route planning is an effective means to reduce the ope...With the rapid growth of the number and flight time of unmanned aerial vehicles(UAVs),safety accidents caused by UAVs flight risk is increasing gradually.Safe air route planning is an effective means to reduce the operational risk of UAVs at the strategic level.The optimal air route planning model based on ground risk assessment is presented by considering the safety cost of UAV air route.Through the rasterization of the ground surface under the air route,the safety factor of each grid is defined with the probability of fatality on the ground per flight hour as the quantitative index.The air route safety cost function is constructed based on the safety factor of each grid.Then,the total cost function considering both air route safety and flight distance is established.The expected function of the ant colony algorithm is rebuilt and used as the algorithm to plan the air routes.The effectiveness of the new air route planning model is verified through the logistical distribution scenario on urban airspace.The results indicate that the new air route planning model considering safety factor can greatly improve the overall safety of air route under small increase of the total flight time.展开更多
Vacuum preloading has been widely used to improve soft soils in coastal areas of China.An increasing amount of evidence from field operations has shown that conventional vacuum preloading is prone to clogging in prefa...Vacuum preloading has been widely used to improve soft soils in coastal areas of China.An increasing amount of evidence from field operations has shown that conventional vacuum preloading is prone to clogging in prefabricated vertical drains(PVDs)and demands a large volume of sand fills.In recent years,air-boosted vacuum preloading has been developed to overcome these limitations;however,this method still requires more data to verify its performance.In this study,a field test for air-boosted vacuum preloading was conducted,and a large-strain two-dimensional(2D)finite element(FE)model was developed and validated against the field test data.Then,a series of FE parametric analyses was performed to assess key factors,i.e.the air injection pressure,the injection spacing,and the characteristics of cyclic injection,which affect the performance of the air-boosted vacuum preloading.The results showed that the ground settlement and lateral displacement of the soils increased due to an increase in the injection pressure,a decrease in the injection spacing,or increases in the number and duration of the injection cycles.Based on the parametric analyses,an empirical formula for ground settlement prediction was proposed and compared with a case history reported in the literature,showing good agreement.展开更多
Jet grouting is one of the most popular soil improvement techniques,but its design usually involves great uncertainties that can lead to economic cost overruns in construction projects.The high dispersion in the prope...Jet grouting is one of the most popular soil improvement techniques,but its design usually involves great uncertainties that can lead to economic cost overruns in construction projects.The high dispersion in the properties of the improved material leads to designers assuming a conservative,arbitrary and unjustified strength,which is even sometimes subjected to the results of the test fields.The present paper presents an approach for prediction of the uniaxial compressive strength(UCS)of jet grouting columns based on the analysis of several machine learning algorithms on a database of 854 results mainly collected from different research papers.The selected machine learning model(extremely randomized trees)relates the soil type and various parameters of the technique to the value of the compressive strength.Despite the complex mechanism that surrounds the jet grouting process,evidenced by the high dispersion and low correlation of the variables studied,the trained model allows to optimally predict the values of compressive strength with a significant improvement with respect to the existing works.Consequently,this work proposes for the first time a reliable and easily applicable approach for estimation of the compressive strength of jet grouting columns.展开更多
基金This paper is supported by Institute of Civil Engineering Architecture, Wuhan University of Technology.
文摘With the rapid development of expressway in China, the ground improvement is becoming more and more important. The decision of the ground improvement method often depends on the experience of an engineer. This paper sets up a module of multi-level fuzzy decision of the ground improvement method in the expressway construction which is mainly to set up multi-level structure module, to get value of the affected factors at rule level and index level, to set up the character index matrix of project level and to have a total evaluation on the projects. Combined with the project of ground improvement on the Second Cincture Road in Wuhan, a case study is carried out with satisfactory results.
文摘Urbanization is the physical growth of urban areas as a result of global change. As the land cost is increasing tremendously and decreasing availability of good construction site is building up pressure on the engineers to utilize even the poorest site either by providing special type of foundation or by improving ground in urban centres. In this context literature is reviewed for use of landfill site for housing. The site exploration for old dump site was carried out to assess subsoil characteristics. The objective was to evolve strategy for economical feasible ground improvement technique to obtain permissible bearing capacity of 150 kPa and total settlement not more than 50 mm. The tests carried out are load tests with geotextile mat and stone filled wire mess matress. The analysis was attempted to evaluate the soil response and bearing capacity. The site can be used for construction of low rise housing for rehabilitation of displaced persons under TP scheme within city area utilizing old landfill sites.
基金The financial support from National Natural Science Foundation of China (Grant Nos. 12172211 and 52078021)Shanghai Key Laboratory of Rail Infrastructure Durability and System Safety, China (Grant No. R201904)
文摘This study focuses on the consolidation behavior and mathematical interpretation of partially-saturated ground improved by impervious column inclusion.The constitutive relations for soil skeleton,pore air and pore water for partially saturated soils are proposed in the context of partially-saturated ground improved by impervious column inclusion.Settlement equation and dissipation equations of excess pore air/water pressures for a partially saturated improved ground are then derived.The semi-analytical solutions for ground settlement and pore pressure dissipation are then obtained through the Laplace transform and validated by the existing solutions for two special cases in the literature and the numerical results obtained from the finite difference method.A series of parametric studies is finally conducted to investigate the influence of some key factors on consolidation of partially saturated ground improved by impervious column inclusion.Based on the parametric study,it can be found that a higher value of the area replacement ratio or modulus of the pile results in a longer dissipation time of excess pore air pressure(PAP),a shorter dissipation time of excess pore water pressure(PWP),and a lower normalized settlement.
基金the Science and Technology Cooperation Research and Development Project of Sichuan Provincial Academy and University(Grant No.2019YFSY0024)the Key Research and Development Program in Sichuan Province of China(Grant No.2019YFG0050)the Natural Science Foundation of Guangxi Province of China(Grant No.AD19245021).
文摘Support vehicles are part of the main body of airport ground operations,and their scheduling efficiency directly impacts flight delays.A mathematical model is constructed and the responsiveness of support vehicles for current operational demands is proposed to study optimization algorithms for vehicle scheduling.The model is based on the constraint relationship of the initial operation time,time window,and gate position distribution,which gives an improvement to the ant colony algorithm(ACO).The impacts of the improved ACO as used for support vehicle optimization are compared and analyzed.The results show that the scheduling scheme of refueling trucks based on the improved ACO can reduce flight delays caused by refueling operations by 56.87%,indicating the improved ACO can improve support vehicle scheduling.Besides,the improved ACO can jump out of local optima,which can balance the working time of refueling trucks.This research optimizes the scheduling scheme of support vehicles under the existing conditions of airports,which has practical significance to fully utilize ground service resources,improve the efficiency of airport ground operations,and effectively reduce flight delays caused by ground service support.
文摘A highway was constructed in Jiangxi Province, China, through mountainous area. Some sections of the highway went through valleys where a soft clay layer of 6,8.5 m deep was encountered. A new explosive method was developed and adopted for this project. In this method, blasting is used to remove and replace soft clay with crushed stones. Explosive charges are placed in the soil to be improved according to a certain pattern. Crushed stones are piled up behind the area where charges are installed. The explosion removes most of the soil in the exploded area and causes the pile of crushed stones to slide into the area where the soil is removed by blasting. A formular was suggested to calculate the charge weight used for improving a certain type of soil. The effectiveness of the method is evaluated using borehole exploration, plate load tests,and ground-probing radar tests.
文摘Sand Compaction Piles(SCP)commonly known as Sand Columns(SC)now has been vastly used for reinforcing the range of soft soils.The installation of sand columns results in enhancing the ultimate bearing capacity of soft soil,increase the rate of consolidation,prevention of liquefaction in loose sandy soils and provide lateral resistance against the horizontal movement.This research aims at investigating the effects of floating columns in clayey soil with silty deposits by developing small scale laboratory models.The laboratory tests were conducted on a circular column of 37 mm diameter and results of the treated ground are compared to the untreated ground.The effects of sand columns on soils of different shear strengths(low-medium-high),slenderness ratio(L/D)of columns and different loading pattern are investigated.Group effect was also investigated by varying the spacing between the columns.The equivalent entire area of test model was loaded to determine the stiffness of composite ground and axial capacity of sand column was determined by loading the column area alone.Based on current study,it was concluded that sand column can significantly enhance the engineering properties of soft clayey soil.Also,the group effect was studied and it was concluded that by increasing the spacing between the columns,the group efficiency decreases.The axial capacity of sand columns decreases while increasing the spacing between the columns.
基金funding support from the National Natural Science Foundation of China(Grant Nos.52178373 and 51878657).
文摘The utilization of stone columns has emerged as a popular ground improvement strategy,whereas the drainage performance can be adversely hampered by clogging effect.Despite the ample progress of calculation methods for the consolidation of stone column-improved ground,theoretical investigations into the clogging effect have not been thoroughly explored.Furthermore,it is imperative to involve the column consolidation deformation to mitigate computational error on the consolidation of composite ground with high replacement ratios.In this context,an analytical model accounting for the initial clogging and coupled time and depth-dependent clogging of stone columns is established.Then,the resulting governing equations and analytical solutions are obtained under a new flow continuity relationship to incorporate column consolidation deformation.The accuracy and reliability of the proposed model are illustrated by degradation analysis and case studies with good agreements.Subsequently,the computed results of the current study are juxtaposed against the existing models,and an in-depth assessment of the impacts of several crucial parameters on the consolidation behavior is conducted.The results reveal that ignoring column consolidation deformation leads to an overestimate of the consolidation rate,with maximum error reaching up to 16%as the replacement ratio increases.Furthermore,the initial clogging also has a significant influence on the consolidation performance.Additionally,the increment of depth and time-clogging factors a and b will induce a noticeable retardation of the consolidation process,particularly in the later stage.
基金funded by the Science and Technology Department of Railway Ministry (Grant No. Z2012061)
文摘Abutment piles in soft ground may be subjected to both vertical and horizontal soil movements resulting from approach embankment loads. To constrain the soil movements, the soft soil ground beneath the approach embankment is often improved using composite pile foundations, which aim at mitigating the bump induced by high-speed trains passing through the bridge. So far, there is limited literature on exploring the influence of the degree of ground improvement on abutment piles installed in soft soil grounds. In this paper, a series of three-dimensional (3D) centrifuge model tests was performed on an approach embankment over a silty clay deposit improved by cement-fly ash-gravel (CFG) piles combined with geogrid. Emphasis is placed on the effects of ground replacement ratio (m) on the responses of the abutment piles induced by embankment loads. Meanwhile, a numerical study was conducted with varying ground replacement ratio of the pile-reinforced grounds. Results show that the performance of the abutment piles is significantly improved when reinforcing the ground with CFG piles beneath the approach embankment. Interestingly, there is a threshold value of the replacement ratio of around 4.9% above which the effect of CFG pile foundations is limited. This implies that it is essential to optimize the ground improvement for having a cost-effective design while minimizing the risk of the bump at the end of bridge.
基金This work is supported by the Scientific Research Project of Tianjin Education Commission(No.2019KJ128).
文摘With the rapid growth of the number and flight time of unmanned aerial vehicles(UAVs),safety accidents caused by UAVs flight risk is increasing gradually.Safe air route planning is an effective means to reduce the operational risk of UAVs at the strategic level.The optimal air route planning model based on ground risk assessment is presented by considering the safety cost of UAV air route.Through the rasterization of the ground surface under the air route,the safety factor of each grid is defined with the probability of fatality on the ground per flight hour as the quantitative index.The air route safety cost function is constructed based on the safety factor of each grid.Then,the total cost function considering both air route safety and flight distance is established.The expected function of the ant colony algorithm is rebuilt and used as the algorithm to plan the air routes.The effectiveness of the new air route planning model is verified through the logistical distribution scenario on urban airspace.The results indicate that the new air route planning model considering safety factor can greatly improve the overall safety of air route under small increase of the total flight time.
基金the National Key Research and Development Program of China(Grant No.2017YFC0805402)the Tianjin Construction Commission Science and Technology Project(financial support No.2017E6-0015)the China Scholarship Council(CSC)(Grant No.201906250153)for their Grant of the study in this paper。
文摘Vacuum preloading has been widely used to improve soft soils in coastal areas of China.An increasing amount of evidence from field operations has shown that conventional vacuum preloading is prone to clogging in prefabricated vertical drains(PVDs)and demands a large volume of sand fills.In recent years,air-boosted vacuum preloading has been developed to overcome these limitations;however,this method still requires more data to verify its performance.In this study,a field test for air-boosted vacuum preloading was conducted,and a large-strain two-dimensional(2D)finite element(FE)model was developed and validated against the field test data.Then,a series of FE parametric analyses was performed to assess key factors,i.e.the air injection pressure,the injection spacing,and the characteristics of cyclic injection,which affect the performance of the air-boosted vacuum preloading.The results showed that the ground settlement and lateral displacement of the soils increased due to an increase in the injection pressure,a decrease in the injection spacing,or increases in the number and duration of the injection cycles.Based on the parametric analyses,an empirical formula for ground settlement prediction was proposed and compared with a case history reported in the literature,showing good agreement.
基金This work has been supported by the Conselleria de Inno-vación,Universidades,Ciencia y Sociedad Digital de la Generalitat Valenciana(CIAICO/2021/335).
文摘Jet grouting is one of the most popular soil improvement techniques,but its design usually involves great uncertainties that can lead to economic cost overruns in construction projects.The high dispersion in the properties of the improved material leads to designers assuming a conservative,arbitrary and unjustified strength,which is even sometimes subjected to the results of the test fields.The present paper presents an approach for prediction of the uniaxial compressive strength(UCS)of jet grouting columns based on the analysis of several machine learning algorithms on a database of 854 results mainly collected from different research papers.The selected machine learning model(extremely randomized trees)relates the soil type and various parameters of the technique to the value of the compressive strength.Despite the complex mechanism that surrounds the jet grouting process,evidenced by the high dispersion and low correlation of the variables studied,the trained model allows to optimally predict the values of compressive strength with a significant improvement with respect to the existing works.Consequently,this work proposes for the first time a reliable and easily applicable approach for estimation of the compressive strength of jet grouting columns.