为实现高效、快速、客观地对对地攻击无人机自主作战效能进行评估,文中引入向量加权平均算法(Weighed Mean of Vectors Algorithm,INFO)和K折交叉验证方法对随机森林算法(Random Forest,RF)进行优化寻找最优参数组合,提出了基于优化随...为实现高效、快速、客观地对对地攻击无人机自主作战效能进行评估,文中引入向量加权平均算法(Weighed Mean of Vectors Algorithm,INFO)和K折交叉验证方法对随机森林算法(Random Forest,RF)进行优化寻找最优参数组合,提出了基于优化随机森林的对地攻击无人机自主作战效能评估方法。首先,基于向量加权平均优化算法理论,对随机森林决策树模型数量以及最大深度两项超参数进行寻优。其次,结合对地攻击无人机作战任务,对自主作战效能评估的主要作战因素进行分析,归纳总结了对地攻击无人机自主作战效能评估指标体系,并建立了基于INFO-RF的无人机自主作战效能评估模型。最后,通过对评估模型进行实例验证并与其他方法进行对比分析,结果表明,相较于传统RF模型、GA-RF模型和SVM模型,INFO-RF模型输出结果具有较高的拟合度和更为精确的评估值,实例结果有效验证了所提方法的合理性和优化模型的可靠性。展开更多
文摘为实现高效、快速、客观地对对地攻击无人机自主作战效能进行评估,文中引入向量加权平均算法(Weighed Mean of Vectors Algorithm,INFO)和K折交叉验证方法对随机森林算法(Random Forest,RF)进行优化寻找最优参数组合,提出了基于优化随机森林的对地攻击无人机自主作战效能评估方法。首先,基于向量加权平均优化算法理论,对随机森林决策树模型数量以及最大深度两项超参数进行寻优。其次,结合对地攻击无人机作战任务,对自主作战效能评估的主要作战因素进行分析,归纳总结了对地攻击无人机自主作战效能评估指标体系,并建立了基于INFO-RF的无人机自主作战效能评估模型。最后,通过对评估模型进行实例验证并与其他方法进行对比分析,结果表明,相较于传统RF模型、GA-RF模型和SVM模型,INFO-RF模型输出结果具有较高的拟合度和更为精确的评估值,实例结果有效验证了所提方法的合理性和优化模型的可靠性。