Ground calibration experiments of the Mars orbiter magnetometer(MOMAG)onboard the orbiter of Tianwen-1 were performed to determine the sensitivity,misalignment angle,and offset of the sensors.The linearity of the appl...Ground calibration experiments of the Mars orbiter magnetometer(MOMAG)onboard the orbiter of Tianwen-1 were performed to determine the sensitivity,misalignment angle,and offset of the sensors.The linearity of the applied calibrated magnetic fields and the output from the sensors were confirmed to be better than 10^(-4),and the sensor axes were orthogonal to each other within 0.5 degrees.The temperature dependencies of the sensitivity and misalignment angle were examined,but no clear signatures of temperature dependencies could be seen.Sensor offset and the stability of sensor offset drift with a temperature change were also determined by the rotation method.The stability of the sensor offset drift was less than 0.01 nT/℃.The ground calibration of MOMAG determines all the calibration parameters of the sensors for accurate magnetic field measurements in orbit with the appropriate corrections.展开更多
The Gamma-ray Transient Monitor(GTM) is an all-sky monitor onboard the Distant Retrograde Orbit-A(DRO-A) satellite with the scientific objective of detecting gamma-ray transients ranging from 20 ke V to 1 MeV. The GTM...The Gamma-ray Transient Monitor(GTM) is an all-sky monitor onboard the Distant Retrograde Orbit-A(DRO-A) satellite with the scientific objective of detecting gamma-ray transients ranging from 20 ke V to 1 MeV. The GTM was equipped with five Gamma-ray Transient Probe(GTP) detector modules utilizing a NaI(Tl) scintillator coupled with a SiPM array. To reduce the SiPM noise, GTP uses a dedicated dual-channel coincident readout design. In this work, we first studied the impact of different coincidence times on the detection efficiency and ultimately selected a 0.5 μs time coincidence window for offline data processing. To test the performance of the GTPs and validate the Monte-Carlo-simulated energy response, we conducted comprehensive ground calibration tests using the Hard X-ray Calibration Facility(HXCF) and radioactive sources, including the energy response, detection efficiency, spatial response, bias-voltage response, and temperature dependence. We extensively present the ground calibration results and validate the design and mass model of the GTP detector, thus providing the foundation for in-flight observations and scientific data analysis.展开更多
基金This work was financially supported by the Chinese National Space Administration(CNSA),the Strategic Priority Program(Grant No.XDB41000000)the Key Research Program of Frontier Sciences(No.QYZDB-SSW-DQC015)the Strategic Priority Program(Grant No.XDB41030100)of the Chinese Academy of Sciences.Thanks are extended to the entire MOMAG team at the University of Science and Technology of China.
文摘Ground calibration experiments of the Mars orbiter magnetometer(MOMAG)onboard the orbiter of Tianwen-1 were performed to determine the sensitivity,misalignment angle,and offset of the sensors.The linearity of the applied calibrated magnetic fields and the output from the sensors were confirmed to be better than 10^(-4),and the sensor axes were orthogonal to each other within 0.5 degrees.The temperature dependencies of the sensitivity and misalignment angle were examined,but no clear signatures of temperature dependencies could be seen.Sensor offset and the stability of sensor offset drift with a temperature change were also determined by the rotation method.The stability of the sensor offset drift was less than 0.01 nT/℃.The ground calibration of MOMAG determines all the calibration parameters of the sensors for accurate magnetic field measurements in orbit with the appropriate corrections.
基金supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant Nos.XDA30050100 and XDA30030000)the National Natural Science Foundation of China (Grant Nos.12173038,11775251,12273042,and 12075258)funded by the Strategic Priority Research Program on Space Science (Grant No.XDA15360000) of the Chinese Academy of Sciences (CAS)。
文摘The Gamma-ray Transient Monitor(GTM) is an all-sky monitor onboard the Distant Retrograde Orbit-A(DRO-A) satellite with the scientific objective of detecting gamma-ray transients ranging from 20 ke V to 1 MeV. The GTM was equipped with five Gamma-ray Transient Probe(GTP) detector modules utilizing a NaI(Tl) scintillator coupled with a SiPM array. To reduce the SiPM noise, GTP uses a dedicated dual-channel coincident readout design. In this work, we first studied the impact of different coincidence times on the detection efficiency and ultimately selected a 0.5 μs time coincidence window for offline data processing. To test the performance of the GTPs and validate the Monte-Carlo-simulated energy response, we conducted comprehensive ground calibration tests using the Hard X-ray Calibration Facility(HXCF) and radioactive sources, including the energy response, detection efficiency, spatial response, bias-voltage response, and temperature dependence. We extensively present the ground calibration results and validate the design and mass model of the GTP detector, thus providing the foundation for in-flight observations and scientific data analysis.