期刊文献+
共找到378篇文章
< 1 2 19 >
每页显示 20 50 100
A Binder of Phosphogypsum-Ground Granulated Blast Furnace Slag-Ordinary Portland Cement 被引量:3
1
作者 黄赟 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2011年第3期548-551,共4页
A new hydraulic cementitious binder was developed by mainly utilizing industrial byproducts phosphogypsum(PG)and ground granulated blast furnace slag(GGBFS)with small addition of ordinary portland cement(OPC).Th... A new hydraulic cementitious binder was developed by mainly utilizing industrial byproducts phosphogypsum(PG)and ground granulated blast furnace slag(GGBFS)with small addition of ordinary portland cement(OPC).The hydration process and microstructure were studied by X-ray diffraction(XRD) and scanning electronic microscopy(SEM).OPC hydrated first at early age to form primarily C-S-H gel,ettringite and calcium hydroxide(CH).GGBFS activated by CH and sulfate ions hydrated continuously at later age,producing more and more hydration products,C-S-H gel and ettringite.Thus the paste developed a denser microstructure and its strength increased.The 28 d compressive strength of the mixture of 50%PG,46% GGBFS and 4%OPC exceeded 45 MPa.The setting time was faster and 3 d and 7 d strength were higher when the proportion of OPC increased.But the 28 d strength decreased when OPC exceeded 4%due to large amount of ettringite formed at late hydration age which damaged the microstructure. 展开更多
关键词 phosphogypsum ground granulated blast furnace slag hydraulic cementitious binder
下载PDF
Influence of Carbonation on Fatigue of Concrete with High Volume of Ground Granulated Blast-furnace Slag 被引量:1
2
作者 游渌棽 蒋林华 CHU Hongqiang 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2015年第2期361-368,共8页
The effect of carbonation on fatigue performance of ground granulated blast-furnace slag concrete was investigated. Based on the static compression tests of carbonated GGBS-concrete, the correlation between carbonatio... The effect of carbonation on fatigue performance of ground granulated blast-furnace slag concrete was investigated. Based on the static compression tests of carbonated GGBS-concrete, the correlation between carbonation depth and compressive strength was analyzed and an equation between carbonation depth and compressive strength was put forward. Meanwhile, fatigue S-N curves of various carbonation depths were fitted, and the infl uence of carbonation on fatigue life and strength was studied. Carbonation has a dual effect on the fatigue behavior of GGBS-concrete. A fatigue equation based on the depth of carbonation was established. Also, the probabilistic distribution of fatigue life of carbonated concrete at a given stress level was modeled by the two-parameter Weibull distribution. 展开更多
关键词 ground granulated blast-furnace slag concrete fatigue carbonation
下载PDF
Modeling Tensile Strength of Concrete on Partial Replacement of Ce­ment and Sand with Quarry Dust Ground Granulated Blast Furnace and Slag Silica Fumes
3
作者 Eluozo S.N Dimkpa K. 《Journal of Building Material Science》 2021年第1期43-50,共8页
Tensile strength of concrete were examined on its partial replacement of cement and sand using ground granulated blast furnace and quarry dust.The study examines its behaviour at different dimensions.This is to monito... Tensile strength of concrete were examined on its partial replacement of cement and sand using ground granulated blast furnace and quarry dust.The study examines its behaviour at different dimensions.This is to monitor the variation effect of these parameters on the growth rates of tensile to the optimum curing age.These include non linear conditions of tensile state,non-elastic and its brittle behaviour at all times as it express zero conditions in tension.This means that it has the ability to with stand pull force.It also reflects its weak ability to handle shear stress thus tends to cause deformation in material as it has poor elasticity.The reflection of its brittle influence the rate of tensile behaviour from concrete ductility.These are known to be a material on modern mechanics of concrete.These are also considered as quasi brittle material.This behaviour was reflected as the system considered evaluating the growth rate of tensile strength that replaced cement and sand with these locally sourced addictives.The developed model monitor other reflected influential parameters such as variation of concrete porosity due it compaction in placements,tensile behaviour reflects these effect that subject it to mechanical properties of concrete.The study expressed the reaction of these parameters in the simulation,the evaluation of these affected the details variation of tensile growth rate at different water cement ratios and curing age.The tensile behaviour that was monitored are based on these factors in the study.The derived model were validated with the a researcher results[24],and both parameters developed best fits correlation.The study is imperative because the system expressed the behaviour of tensile strength from concrete at different dimensions.Experts can applied these concept to monitor tensile behaviour considering these parameters in its growth rates. 展开更多
关键词 Modeling tensile quarry dust ground granulated blast furnace slag and silica fumes
下载PDF
Effect of Steel Slag and Granulated Blast-furnace Slag on the Mechanical Strength and Pore Structure of Cement Composites 被引量:3
4
作者 XU Gang HE Xingyang HE Yabo 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2018年第5期1186-1192,共7页
Reuse of solid industrial wastes is an effective approach to develop low-carbon construction materials. This paper examines how two materials, steel slag(ST) and granulated blast-furnace slag(SL) impact the mechan... Reuse of solid industrial wastes is an effective approach to develop low-carbon construction materials. This paper examines how two materials, steel slag(ST) and granulated blast-furnace slag(SL) impact the mechanical performance and pore structure of cement-based systems. Analysis was done on the variations of the porosity, pore size, and pore volume distribution with the curing age and replacement content, and the fractal dimensions of pore surfaces. The results suggested that systems with both supplementary materials had lower early strengths than pure cement, but could generally surpass pure cement paste after 90 d; higher SL content was particularly helpful for boosting the late strengths. The addition of ST increased the porosities and mean pore sizes at each age, and both increased with ST content; SL was helpful for decreasing the system's late porosity(especially harmless pores below 20 nm); The lowest porosity and mean pore size were obtained with 20% SL. Both systems had notably fractal characteristics on pore surfaces, with ST systems showing the highest dimensions at 10% ST, and SL systems at 20% SL. Compressive strength displayed a significant linear increase with fractal dimension. 展开更多
关键词 steel slag granulated blast-furnace slag mechanical performance pore structure fractal dimension
下载PDF
Abrasion Resistance of Cement Paste with Granulated Blast Furnace Slag and Its Relations to Microhardness and Microstructure
5
作者 CHEN Xiaorun HE Zhen +3 位作者 CAI Xinhua ZHAO Rixu HU Lingling CHEN Hongren 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2022年第3期410-415,共6页
The abrasion resistance of cement pastes with 30 wt%,40 wt%and 50 wt%granulated blast furnace slag(GBFS),and its relations to microhardness and microstructure like hydration products and pore structure were studied.Re... The abrasion resistance of cement pastes with 30 wt%,40 wt%and 50 wt%granulated blast furnace slag(GBFS),and its relations to microhardness and microstructure like hydration products and pore structure were studied.Results indicated that GBFS decreased the abrasion resistance of paste,and among the pastes with GBFS,the paste with 40 wt%GBFS showed the highest abrasion resistance.The microhardness of GBFS was lower than that of the cement,and the microhardness of the hydration products in paste with GBFS was also lower than that of the hydration products in paste without GBFS,so that the abrasion resistance of paste decreased when GBFS was incorporated.The reason for the decrease of microhardness of pastes with GBFS was that the contents of Ca(OH)_(2)in pastes with GBFS was significantly lower than that in the paste without GBFS,while large amounts of calcium aluminate hydrates and hydrotalcite-like phases(HT)in pastes with GBFS were generated.Furthermore,among the pastes with GBFS,the paste with 40 wt%GBFS showed the lowest porosity which was the main reason for its highest abrasion resistance. 展开更多
关键词 PASTE abrasion resistance granulated blast furnace slag MICROHARDNESS MICROSTRUCTURE
下载PDF
Sulfuric Acid Resistance of Concrete with Blast Furnace Slag Fine Aggregate
6
作者 Paweena Jariyathitipong Kazuyoshi Hosotani +1 位作者 Takashi Fujii Toshiki Ayano 《Journal of Civil Engineering and Architecture》 2014年第11期1403-1413,共11页
The deterioration of concrete by sulfuric acid attack in sewage environments has become a serious problem for many existing sewage structures. In this study, the properties of concrete using the blast furnace slag hav... The deterioration of concrete by sulfuric acid attack in sewage environments has become a serious problem for many existing sewage structures. In this study, the properties of concrete using the blast furnace slag have been examined. It was shown that by using the blast furnace slag fine aggregate and blast furnace slag fine powder, it is possible to enhance the resistance of mortar and concrete to sulfuric acid. The resistance to sulfuric acid of mortar and concrete can be improved by using a blast-furnace slag fine aggregate in the total amount of fine aggregate. When mortar or concrete reacts to sulfuric acid, dihydrated gypsum film is formed around the particulate of the fine aggregate. This dihydrated gypsum film could retard the penetration of sulfuric acid, thus, improving the resistance to sulfuric acid. Furthermore, it has been proved that the relationship between the erosion depth by sulfuric acid attack and the product of immersion period and concentration of sulfuric acid can be expressed linearly. However, this relationship is dependent on the type of materials of concrete. 展开更多
关键词 Sulfuric acid attack blast furnace slag sand ground granulated blast fumace slag GYPSUM sewerage.
下载PDF
Setting and Strength Characteristics of Alkali-activated Carbonatite Cementitious Materials with Ground Slag Replacement 被引量:1
7
作者 赵三银 余其俊 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2006年第1期125-128,共4页
The effect of the ground granulated blast-furnace slag ( GGBFS ) addition, the modulus n ( mole rutio of SiO2 to Na2O ) and the concentrution of sodium silicate solution on the compressive strength of the materi... The effect of the ground granulated blast-furnace slag ( GGBFS ) addition, the modulus n ( mole rutio of SiO2 to Na2O ) and the concentrution of sodium silicate solution on the compressive strength of the material, i e alkuli-activated carbonatite cemeutitious material ( AACCM for short ) was investiguted. In addition, it is found that barium chloride has a sutisfiwtory retarding effect on the setting of AACCM in which more than 20% ( by mass ) ground carbonatite was replaced by GGBFS. As a result, a cementitious material, in which ground carbonatite rock served as dominative starting material, with 3-day and 28-day compressive strength greuter them 30 MPa and 60 MPa and with continuous strength gain beyond 90 days was obtained. 展开更多
关键词 alkali activated cement retardaion compressive strength CARBONATITE granulated blast- furnace slag
下载PDF
Dry Mix Slag—High-Calcium Fly Ash Binder. Part Two: Durability
8
作者 Alexey Brykov Mikhail Voronkov 《Materials Sciences and Applications》 2024年第3期37-51,共15页
This work investigates durability of cement-free mortars with a binder comprised of ground granulated blast furnace slag (GGBFS) activated by high-calcium fly ash (HCFA) and sodium carbonate (Na<sub>2</sub>... This work investigates durability of cement-free mortars with a binder comprised of ground granulated blast furnace slag (GGBFS) activated by high-calcium fly ash (HCFA) and sodium carbonate (Na<sub>2</sub>CO<sub>3</sub>): the soundness, sulfate resistance, alkali-silica reactivity and efflorescence factors are considered. Results of tests show that such mortars are resistant to alkali-silica expansion. Mortars are also sulfate-resistant when the amount of HCFA in the complex binder is within a limit of 10 wt%. The fineness of fly ash determines its’ ability to activate GGBFS hydration, and influence soundness of the binder, early strength development, sulfate resistance and efflorescence behavior. The present article is a continuation of authors’ work, previously published in MSA, Vol. 14, 240-254. 展开更多
关键词 ground granulated blast-furnace slag High-Calcium Fly-Ash Sodium Car-bonate blast-furnace slag Binder DURABILITY ASR Sulfate Attack SOUNDNESS EFFLORESCENCE
下载PDF
Effects of Al_2O_3 nanoparticles on properties of self compacting concrete with ground granulated blast furnace slag (GGBFS) as binder 被引量:9
9
作者 Ali NAZARI Shadi RIAHI 《Science China(Technological Sciences)》 SCIE EI CAS 2011年第9期2327-2338,共12页
In this work, strength assessments and percentage of water absorption of self compacting concrete containing ground granulated blast furnace slag (GGBFS) and A1203 nanoparticles as binder have been investigated. Por... In this work, strength assessments and percentage of water absorption of self compacting concrete containing ground granulated blast furnace slag (GGBFS) and A1203 nanoparticles as binder have been investigated. Portland cement was replaced by different amounts of GGBFS and the properties of concrete specimens were investigated. Although it negatively impacts the physical and mechanical properties of concrete at early ages of curing, GGBFS was found to improve the physical and mechanical properties of concrete up to 45 wt% at later ages. A1203 nanoparticles with the average particle size of 15 nm were added partially to concrete with the optimum content of GGBFS and physical and mechanical properties of the specimens were measured. A1203 nanoparticle as a partial replacement of cement up to 3.0 wt% could accelerate C-S-H gel formation as a result of increased crystalline Ca(OH)2 amount at the early ages and hence increase strength and improve the resistance to water permeability of concrete specimens. The increase of the A1203 nanoparticles' content by more than 3.0 wt% would cause the reduction of the strength because of the decreased crystalline Ca(OH)2 content required for C-S-H gel formation. Several empirical relationships have been presented to predict flexural and split tensile strength of the specimens by means of the corresponding compressive strength at a certain age of curing. Accelerated peak appearance in conduction calorimetry tests, more weight loss in thermogravimetric analysis and more rapid appearance of the peaks related to hydrated products in X-ray diffraction results, all indicate that A1203 nanoparticles could improve mechanical and physical properties of the concrete specimens. 展开更多
关键词 CONCRETE ground granulated blast furnace slag (GGBFS) Al203 nanoparticles compressive strength flexural and splittensile strength pore structure thermogravimetric analysis conduction calorimetry
原文传递
TiO_2 nanoparticles' effects on properties of concrete using ground granulated blast furnace slag as binder 被引量:7
10
作者 NAZARI Ali RIAHI Shadi 《Science China(Technological Sciences)》 SCIE EI CAS 2011年第11期3109-3118,共10页
In the present study, compressive strength, pore structure, thermal behavior and microstrncture characteristics of concrete containing ground granulated blast furnace slag and TiO2 nanoparticles as binder were investi... In the present study, compressive strength, pore structure, thermal behavior and microstrncture characteristics of concrete containing ground granulated blast furnace slag and TiO2 nanoparticles as binder were investigated. Portland cement was replaced by different amounts of ground granulated blast furnace slag and the properties of concrete specimens were investigated. Al- though it negatively impacts the properties of concrete at early ages, ground granulated blast furnace slag up to 45 wt% was found to improve the physical and mechanical properties of concrete at later ages. TiO2 nanoparticles with the average particle size of 15 nm were partially added to concrete with the optimum content of ground granulated blast furnace slag and physical and mechanical properties of the specimens were measured. TiO2 nanoparticle as a partial replacement of cement up to 3 wt% could accelerate C-S-H gel formation as a result of increased crystalline Ca(OH)2 amount at the early age of hydration and hence increase compressive strength of concrete. The increased TiO2 nanoparticles' content of more than 3 wt% may cause reduced compressive strength because of the decreased crystalline Ca(OH)2 content required for C-S-H gel formation and unsuitable dispersed nanoparticles in the concrete matrix. TiO2 nanoparticles could improve the pore structure of concrete and shift the distributed pores to harmless and less-harm pores. 展开更多
关键词 CONCRETE ground granulated blast furnace slag TiO2 nanoparticles compressive strength pore structure
原文传递
生石灰激发GGBS固化高含水率香港海相沉积物的物理力学性质研究 被引量:6
11
作者 蔡光华 周伊帆 +1 位作者 潘智生 李江山 《岩土力学》 EI CAS CSCD 北大核心 2022年第2期327-336,共10页
海相沉积物处置已成为一项全球范围的挑战。在传统固化/稳定化方法中,环境污染严重的波兰特水泥(PC)是一种被广泛使用的固化剂。在此背景下,一种环境友好型的固化剂(生石灰与粒化高炉矿渣(简称GGBS)的混合料)取代PC来用在土壤改良领域... 海相沉积物处置已成为一项全球范围的挑战。在传统固化/稳定化方法中,环境污染严重的波兰特水泥(PC)是一种被广泛使用的固化剂。在此背景下,一种环境友好型的固化剂(生石灰与粒化高炉矿渣(简称GGBS)的混合料)取代PC来用在土壤改良领域。使用生石灰激发GGBS固化处理高含水率海相沉积物,并与PC固化海相沉积物进行比较。通过物理、化学试验及无侧限抗压强度试验分析了生石灰-GGBS固化海相沉积物的物理、化学和强度特性。结果表明:与PC固化海相沉积物相比,生石灰-GGBS固化沉积物具有体积收缩大、含水率低和密度略高的物理特性。随着生石灰比例的降低和养护时间的延长,生石灰-GGBS固化沉积物的pH值逐渐降低。生石灰-GGBS固化沉积物的无侧限抗压强度呈先增大(生石灰:固化剂为0.05~0.15)后减小(生石灰:固化剂为0.15~0.3)再增大(生石灰:固化剂为0.3~0.4)的趋势;当生石灰与固化剂的比值为0.15及0.4时,强度达到最大值;当生石灰与固化剂的比值为0.15时,生石灰-GGBS固化沉积物达到的峰值强度是相同条件下PC固化沉积物强度的1.4倍。该研究结果证实了GGBS与少量生石灰组合可以替代PC来固化高含水率的天然沉积物。 展开更多
关键词 海洋沉积物 生石灰 粒化高炉矿渣(ggbs) 生石灰-固化剂比 力学性能
下载PDF
淋滤条件下GGBS-MgO固化铅污染黏土强度与溶出特性研究 被引量:15
12
作者 薄煜琳 于博伟 +1 位作者 杜延军 魏明俐 《岩土力学》 EI CAS CSCD 北大核心 2015年第10期2877-2891,2906,共16页
以粒化高炉矿渣粉-氧化镁(GGBS-MgO)固化铅污染黏土为研究对象,通过半动态淋滤试验,对GGBS-MgO在酸雨作用下的强度特性及溶出特性进行研究。通过对GGBS-MgO固化铅污染黏土半动态淋滤后pH值、针刺深度、无侧限抗压强度及浸出液中[Pb]、... 以粒化高炉矿渣粉-氧化镁(GGBS-MgO)固化铅污染黏土为研究对象,通过半动态淋滤试验,对GGBS-MgO在酸雨作用下的强度特性及溶出特性进行研究。通过对GGBS-MgO固化铅污染黏土半动态淋滤后pH值、针刺深度、无侧限抗压强度及浸出液中[Pb]、[Ca]、[Mg]元素浓度的测试,分析淋滤液初始pH值、掺量以及含铅不含铅对GGBS-MgO固化土强度特性的影响,讨论了初始淋滤液pH值、固化剂掺量对GGBS-MgO固化铅污染土累积铅、钙、镁溶出质量以及铅有效扩散系数的影响规律。结果表明,半动态淋滤试验使试样无侧限抗压强度qu较标准养护39d试样降低了2%~53%,且淋滤液初始pH=2对试样qu影响最大;在相同掺量、相同淋滤液初始pH值时,GGBS-MgO固化未污染土半动态淋滤后qu较水泥固化未污染土qu提高了12%~43%;且当固化剂掺量为18%时,固化铅污染土强度特性较水泥有明显优势,约为水泥固化铅污染土强度的1.3~1.8倍;且相同配比时,淋滤液初始pH=2表层的pH值约为pH=3、4、5、7的1/2;随着淋滤液初始pH值、半动态淋滤后qu及内部pH值的增加,针刺深度减小;针贯入阻力与qu存在幂指数关系。此外,累积铅、钙、镁溶出质量随着初始淋滤液pH值、固化剂掺量的增加而减少,在初始淋滤液pH=2时,Ai,Pb、Ai,Ca、Ai,Mg分别约为pH=3、4、5和7的29~222倍、1.7~4.4倍和12.0~80.3倍;固化剂掺量为12%时的累积溶出质量约是18%掺量时的1.1~2.0倍;铅有效扩散系数De随着初始淋滤液pH值的增加而降低,初始淋滤液pH=2时的De比pH=3~7的De高约3~5个数量级;且低于水泥固化铅污染土De,当初始淋滤液pH=7时,GGBS-MgO固化土De相比于水泥固化土低1~2个数量级。 展开更多
关键词 粒化高炉矿渣粉-氧化镁(ggbs-MgO) 固化/稳定化 半动态淋滤 铅污染 无侧限抗压强度 有效扩散系数
下载PDF
Clayey soil stabilization using alkali-activated volcanic ash and slag 被引量:9
13
作者 Hania Miraki Nader Shariatmadari +3 位作者 Pooria Ghadir Soheil Jahandari Zhong Tao Rafat Siddique 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2022年第2期576-591,共16页
Lime and Portland cement are the most widely used binders in soil stabilization projects.However,due to the high carbon emission in cement production,research on soil stabilization by the use of more environmentally-f... Lime and Portland cement are the most widely used binders in soil stabilization projects.However,due to the high carbon emission in cement production,research on soil stabilization by the use of more environmentally-friendly binders with lower carbon footprint has attracted much attention in recent years.This research investigated the potential of using alkali-activated ground granulated blast furnace slag(GGBS)and volcanic ash(VA)as green binders in clayey soil stabilization projects,which has not been studied before.The effects of different combinations of VA with GGBS,various liquid/solid ratios,different curing conditions,and different curing periods(i.e.7 d,28 d and 90 d)were investigated.Compressive strength and durability of specimens against wet-dry and freeze-thaw cycles were then studied through the use of mechanical and microstructural tests.The results demonstrated that the coexistence of GGBS and VA in geopolymerization process was more effective due to the synergic formation of N-A-S-H and C-(A)-S-H gels.Moreover,although VA needs heat curing to become activated and develop strength,its partial replacement with GGBS made the binder suitable for application at ambient temperature and resulted in a remarkably superior resistance against wet-dry and freeze-thaw cycles.The carbon embodied of the mixtures was also evaluated,and the results confirmed the low carbon footprints of the alkali-activated mixtures.Finally,it was concluded that the alkali-activated GGBS/VA could be promisingly used in clayey soil stabilization projects instead of conventional binders. 展开更多
关键词 Soil stabilization Alkali-activated material Volcanic ash(VA) ground granulated blast furnace slag(ggbs) Curing condition DURABILITY
下载PDF
Tests on Alkali-Activated Slag Foamed Concrete with Various Water-Binder Ratios and Substitution Levels of Fly Ash 被引量:6
14
作者 Keun-Hyeok Yang Kyung-Ho Lee 《Journal of Building Construction and Planning Research》 2013年第1期8-14,共7页
To provide basic data for the reasonable mixing design of the alkali-activated (AA) foamed concrete as a thermal insulation material for a floor heating system, 9 concrete mixes with a targeted dry density less than 4... To provide basic data for the reasonable mixing design of the alkali-activated (AA) foamed concrete as a thermal insulation material for a floor heating system, 9 concrete mixes with a targeted dry density less than 400 kg/m3 were tested. Ground granulated blast-furnace slag (GGBS) as a source material was activated by the following two types of alkali activators: 10% Ca(OH)2 and 4% Mg(NO3)2, and 2.5% Ca(OH)2 and 6.5% Na2SiO3. The main test parameters were water-to-binder (W/B) ratio and the substitution level (RFA) of fly ash (FA) for GGBS. Test results revealed that the dry density of AA GGBS foamed concrete was independent of the W/B ratio an RFA, whereas the compressive strength increased with the decrease in W/B ratio and with the increase in RFA up to 15%, beyond which it decreased. With the increase in the W/B ratio, the amount of macro capillaries and artificial air pores increased, which resulted in the decrease of compressive strength. The magnitude of the environmental loads of the AA GGBS foamed concrete is independent of the W/B ratio and RFA. The largest reduction percentage was found in the photochemical oxidation potential, being more than 99%. The reduction percentage was 87% - 93% for the global warming potential, 81% - 84% for abiotic depletion, 79% - 84% for acidification potential, 77% - 85% for eutrophication potential, and 73% - 83% for human toxicity potential. Ultimately, this study proved that the developed AA GGBS foamed concrete has a considerable promise as a sustainable construction material for nonstructural element. 展开更多
关键词 ALKALI-ACTIVATED Foamed Concrete granulated ground blast-furnace slag FLY ASH Water-to-Binder Ratio Environmental Load
下载PDF
Effects of Steel Slag Powder on Workability and Durability of Concrete 被引量:2
15
作者 郭晓潞 施惠生 WU Kai 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2014年第4期733-739,共7页
The workability and durability of a type of sustainable concrete made with steel slag powder were investigated. The hydrated products of cement paste with ground granulated blast furnace slag(GGBFS) alone or with a ... The workability and durability of a type of sustainable concrete made with steel slag powder were investigated. The hydrated products of cement paste with ground granulated blast furnace slag(GGBFS) alone or with a combined admixture of GGBFS-steel slag powder were investigated by X-ray diffraction(XRD). Furthermore, the mechanism of chemically activated steel slag powder was also studied. The experimental results showed that when steel slag powder was added to concrete, the slumps through the same time were lower. The initial and fi nal setting times were slightly retarded. The dry shrinkages were lower, and the abrasion resistance was better. The chemically activated steel slag powder could improve compressive strengths, resistance to chloride permeation and water permeation, as well as carbonization resistance. XRD patterns indicated that the activators enhanced the formation of calcium silicate hydrate(C-S-H) gel and ettringite(AFt). This research contributes to sustainable disposal of wastes and has the potential to provide several important environmental benefi ts. 展开更多
关键词 concrete steel slag powder ground granulated blast furnace slag(GGBFS) workability durability
下载PDF
Properties and Mechanism on Flexural Fatigue of Polypropylene Fiber Reinforced Concrete Containing Slag 被引量:2
16
作者 张慧莉 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2011年第3期533-540,共8页
Properties and mechanism were investigated on flexural fatigue of concrete containing polypropylene fibers and ground granulated blast furnace slag(GGBFS).Four polypropylene fibers’volume fractions and five slag pr... Properties and mechanism were investigated on flexural fatigue of concrete containing polypropylene fibers and ground granulated blast furnace slag(GGBFS).Four polypropylene fibers’volume fractions and five slag proportions were considered.An experiment was conducted to obtain the fatigue lives at three stress levels in 20 Hz frequency and at a constant stress level of 0.59 in four frequency respectively.Mechanism and evaluation were investigated based on the experimental data.Fatigue life span models were established.The results show that the addition of polypropylene fibers improves the flexural fatigue cumulative strength and fatigue life span.It is proposed that the slag particles and hydrated products improve Interfacial Transition Zone(ITZ)structure and benefit flexural fatigue performance.A composite reinforce effect is found with the incorporation of slag and polypropylene fibers.The optimum mixture contents 55%slag with 0.6%polypropylene fiber for the cumulative fatigue stress.Fatigue properties are decreased as the stress level increasing,the higher frequency reduces the fatigue strength more than lower frequency at a constant stress level. 展开更多
关键词 concrete flexural fatigue properties mechanism polypropylene fibers ground granulated blast furnace slag(GGBFS) SEM
下载PDF
Optimum Level of Replacement Slag in OPC-Slag Mortars 被引量:1
17
作者 Fathollah Sajedi Payam Shafigh 《Journal of Civil Engineering and Architecture》 2010年第1期11-19,共9页
The present paper reports the testing of 14 OPC-slag mortars and 2 controls OPC and slag mortars. The main aim is to determine the optimum level of replacement slag for achievement to the highest early strength with r... The present paper reports the testing of 14 OPC-slag mortars and 2 controls OPC and slag mortars. The main aim is to determine the optimum level of replacement slag for achievement to the highest early strength with reasonable flow. Variable was the level of GGBFS in the binder. In this experimental work, two types of sands were used that are: silica and mining sands. It is determined that the optimum level of replacement slag is 40% and use of silica sand in OPC is preferable to mining sand and reversely, use of mining sand is preferred in GG100 to silica sand. All mortars had W/B and S/B 0.33 and 2.25, respectively. 展开更多
关键词 ground granulated blast furnace slag (GGBFS) high early strength optimum level OPC-slag mortar flow
下载PDF
Effect of Content and Fineness of GGBS on Pore Structure of Cement Paste
18
作者 DAI Jinpeng WANG Qicai +2 位作者 ZHANG Xin BI Ruixiao DU Wentao 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2022年第5期933-947,共15页
The effect of the content and specific surface area of the ground granulated blast furnace slag (GGBS) on the pore structure of the cement paste was determined through the low-field nuclear magnetic resonance (NMR).Th... The effect of the content and specific surface area of the ground granulated blast furnace slag (GGBS) on the pore structure of the cement paste was determined through the low-field nuclear magnetic resonance (NMR).The Pearson correlation analysis method was used to calculate the correlation coefficient between the porosity and age of cement paste,the specific surface area of GGBS and the content of GGBS.The test results exhibited that the porosity of the cement paste with different ageing durations gradually decreased on increasing the content and specific surface area of GGBS.The content and specific surface area of GGBS had a negligible effect on the 1-10 nm size gel pores in the cement paste,whereas,had a significant effect on the 10-100 nm size capillary pores.In addition,these parameters did not affect the final most probable pore size of the cement paste.The correlation between age and porosity was the largest,and the correlation between GGBS content and porosity was greater than that between GGBS specific surface area and porosity.Moreover,a modified pore structure model was successfully developed to effectively predict the pore structure of the GGBS based cement paste. 展开更多
关键词 ground granulated blast furnace slag pore structure FINENESS cement paste low-field nuclear magnetic resonance
下载PDF
APPLICATION OF SLAG HIGH PERFORMANCE CONCRETE (SHPC) IN A CAR PARKING BUILDING
19
作者 Dai, Shaobing Li, Jizhong 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 1999年第2期56-61,共6页
Using ground granulated blast furnace slag as the active stuff of high performance concrete (HPC), the C60 SHPC was prepared. The behaviour of the C60 SHPC and its application in the Car Parking Building of Beijing C... Using ground granulated blast furnace slag as the active stuff of high performance concrete (HPC), the C60 SHPC was prepared. The behaviour of the C60 SHPC and its application in the Car Parking Building of Beijing Capital International Airport were described. Also, the manufacturing techniques of reducing cement consumption, lowering hydration heat, minimizing shrinkage cracks and improving durability of the C60 SHPC were discussed. (Author abstract) 3 Refs. 展开更多
关键词 granulated blast furnace slag performance and application of C60SHPC manufacture techniques
下载PDF
Evaluating Simultaneous Impact of Slag and Tire Rubber Powder on Mechanical Characteristics and Durability of Concrete
20
作者 Mostafa Amiri Farzad Hatami Emadaldin Mohammadi Golafshani 《Journal of Renewable Materials》 SCIE EI 2022年第8期2155-2177,共23页
In this experimental study,the impact of Portland cement replacement by ground granulated blast furnace slag(GGBFS)and micronized rubber powder(MRP)on the compressive,flexural,tensile strengths,and rapid chloride migr... In this experimental study,the impact of Portland cement replacement by ground granulated blast furnace slag(GGBFS)and micronized rubber powder(MRP)on the compressive,flexural,tensile strengths,and rapid chloride migration test(RCMT)of concrete were assessed.In this study,samples with different binder content and water to binder ratios,including the MRP with the substitution levels of 0%,2.5%and 5%,and the GGBFS with the substitution ratios of 0%,20%and 40%by weight of Portland cement were made.According to the results,in the samples containing slag and rubber powder in the early ages,on average,a 12.2%decrease in the mechanical characteristics of concrete was observed,nonetheless with raising the age of the samples,the impact of slag on reducing the porosity of concrete lowered the negative impact of rubber powder.Regarding durability characteristics,the RCMT results of the samples were enhanced by using rubber powder because of its insulation impact.Moreover,adding slag into the MRP-included mixtures results in a 23%reduction in the migration rate of the chloride ion averagely.At last,four mathematical statements were derived for the mechanical and durability of concrete containing the MRP and GGBFS utilizing the genetic programming method. 展开更多
关键词 Micronized rubber powder ground granulated blast furnace slag waste materials mechanical properties DURABILITY
下载PDF
上一页 1 2 19 下一页 到第
使用帮助 返回顶部