期刊文献+
共找到374篇文章
< 1 2 19 >
每页显示 20 50 100
A Binder of Phosphogypsum-Ground Granulated Blast Furnace Slag-Ordinary Portland Cement 被引量:3
1
作者 黄赟 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2011年第3期548-551,共4页
A new hydraulic cementitious binder was developed by mainly utilizing industrial byproducts phosphogypsum(PG)and ground granulated blast furnace slag(GGBFS)with small addition of ordinary portland cement(OPC).Th... A new hydraulic cementitious binder was developed by mainly utilizing industrial byproducts phosphogypsum(PG)and ground granulated blast furnace slag(GGBFS)with small addition of ordinary portland cement(OPC).The hydration process and microstructure were studied by X-ray diffraction(XRD) and scanning electronic microscopy(SEM).OPC hydrated first at early age to form primarily C-S-H gel,ettringite and calcium hydroxide(CH).GGBFS activated by CH and sulfate ions hydrated continuously at later age,producing more and more hydration products,C-S-H gel and ettringite.Thus the paste developed a denser microstructure and its strength increased.The 28 d compressive strength of the mixture of 50%PG,46% GGBFS and 4%OPC exceeded 45 MPa.The setting time was faster and 3 d and 7 d strength were higher when the proportion of OPC increased.But the 28 d strength decreased when OPC exceeded 4%due to large amount of ettringite formed at late hydration age which damaged the microstructure. 展开更多
关键词 phosphogypsum ground granulated blast furnace slag hydraulic cementitious binder
下载PDF
Influence of Carbonation on Fatigue of Concrete with High Volume of Ground Granulated Blast-furnace Slag 被引量:1
2
作者 游渌棽 蒋林华 CHU Hongqiang 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2015年第2期361-368,共8页
The effect of carbonation on fatigue performance of ground granulated blast-furnace slag concrete was investigated. Based on the static compression tests of carbonated GGBS-concrete, the correlation between carbonatio... The effect of carbonation on fatigue performance of ground granulated blast-furnace slag concrete was investigated. Based on the static compression tests of carbonated GGBS-concrete, the correlation between carbonation depth and compressive strength was analyzed and an equation between carbonation depth and compressive strength was put forward. Meanwhile, fatigue S-N curves of various carbonation depths were fitted, and the infl uence of carbonation on fatigue life and strength was studied. Carbonation has a dual effect on the fatigue behavior of GGBS-concrete. A fatigue equation based on the depth of carbonation was established. Also, the probabilistic distribution of fatigue life of carbonated concrete at a given stress level was modeled by the two-parameter Weibull distribution. 展开更多
关键词 ground granulated blast-furnace slag concrete fatigue carbonation
下载PDF
Modeling Tensile Strength of Concrete on Partial Replacement of Ce­ment and Sand with Quarry Dust Ground Granulated Blast Furnace and Slag Silica Fumes
3
作者 Eluozo S.N Dimkpa K. 《Journal of Building Material Science》 2021年第1期43-50,共8页
Tensile strength of concrete were examined on its partial replacement of cement and sand using ground granulated blast furnace and quarry dust.The study examines its behaviour at different dimensions.This is to monito... Tensile strength of concrete were examined on its partial replacement of cement and sand using ground granulated blast furnace and quarry dust.The study examines its behaviour at different dimensions.This is to monitor the variation effect of these parameters on the growth rates of tensile to the optimum curing age.These include non linear conditions of tensile state,non-elastic and its brittle behaviour at all times as it express zero conditions in tension.This means that it has the ability to with stand pull force.It also reflects its weak ability to handle shear stress thus tends to cause deformation in material as it has poor elasticity.The reflection of its brittle influence the rate of tensile behaviour from concrete ductility.These are known to be a material on modern mechanics of concrete.These are also considered as quasi brittle material.This behaviour was reflected as the system considered evaluating the growth rate of tensile strength that replaced cement and sand with these locally sourced addictives.The developed model monitor other reflected influential parameters such as variation of concrete porosity due it compaction in placements,tensile behaviour reflects these effect that subject it to mechanical properties of concrete.The study expressed the reaction of these parameters in the simulation,the evaluation of these affected the details variation of tensile growth rate at different water cement ratios and curing age.The tensile behaviour that was monitored are based on these factors in the study.The derived model were validated with the a researcher results[24],and both parameters developed best fits correlation.The study is imperative because the system expressed the behaviour of tensile strength from concrete at different dimensions.Experts can applied these concept to monitor tensile behaviour considering these parameters in its growth rates. 展开更多
关键词 Modeling tensile quarry dust ground granulated blast furnace slag and silica fumes
下载PDF
Effect of Steel Slag and Granulated Blast-furnace Slag on the Mechanical Strength and Pore Structure of Cement Composites 被引量:3
4
作者 徐刚 HE Xingyang 何亚伯 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2018年第5期1186-1192,共7页
Reuse of solid industrial wastes is an effective approach to develop low-carbon construction materials. This paper examines how two materials, steel slag(ST) and granulated blast-furnace slag(SL) impact the mechan... Reuse of solid industrial wastes is an effective approach to develop low-carbon construction materials. This paper examines how two materials, steel slag(ST) and granulated blast-furnace slag(SL) impact the mechanical performance and pore structure of cement-based systems. Analysis was done on the variations of the porosity, pore size, and pore volume distribution with the curing age and replacement content, and the fractal dimensions of pore surfaces. The results suggested that systems with both supplementary materials had lower early strengths than pure cement, but could generally surpass pure cement paste after 90 d; higher SL content was particularly helpful for boosting the late strengths. The addition of ST increased the porosities and mean pore sizes at each age, and both increased with ST content; SL was helpful for decreasing the system's late porosity(especially harmless pores below 20 nm); The lowest porosity and mean pore size were obtained with 20% SL. Both systems had notably fractal characteristics on pore surfaces, with ST systems showing the highest dimensions at 10% ST, and SL systems at 20% SL. Compressive strength displayed a significant linear increase with fractal dimension. 展开更多
关键词 steel slag granulated blast-furnace slag mechanical performance pore structure fractal dimension
下载PDF
Abrasion Resistance of Cement Paste with Granulated Blast Furnace Slag and Its Relations to Microhardness and Microstructure
5
作者 陈晓润 何真 +3 位作者 CAI Xinhua ZHAO Rixu HU Lingling CHEN Hongren 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2022年第3期410-415,共6页
The abrasion resistance of cement pastes with 30 wt%,40 wt%and 50 wt%granulated blast furnace slag(GBFS),and its relations to microhardness and microstructure like hydration products and pore structure were studied.Re... The abrasion resistance of cement pastes with 30 wt%,40 wt%and 50 wt%granulated blast furnace slag(GBFS),and its relations to microhardness and microstructure like hydration products and pore structure were studied.Results indicated that GBFS decreased the abrasion resistance of paste,and among the pastes with GBFS,the paste with 40 wt%GBFS showed the highest abrasion resistance.The microhardness of GBFS was lower than that of the cement,and the microhardness of the hydration products in paste with GBFS was also lower than that of the hydration products in paste without GBFS,so that the abrasion resistance of paste decreased when GBFS was incorporated.The reason for the decrease of microhardness of pastes with GBFS was that the contents of Ca(OH)_(2)in pastes with GBFS was significantly lower than that in the paste without GBFS,while large amounts of calcium aluminate hydrates and hydrotalcite-like phases(HT)in pastes with GBFS were generated.Furthermore,among the pastes with GBFS,the paste with 40 wt%GBFS showed the lowest porosity which was the main reason for its highest abrasion resistance. 展开更多
关键词 PASTE abrasion resistance granulated blast furnace slag MICROHARDNESS MICROSTRUCTURE
下载PDF
Sulfuric Acid Resistance of Concrete with Blast Furnace Slag Fine Aggregate
6
作者 Paweena Jariyathitipong Kazuyoshi Hosotani +1 位作者 Takashi Fujii Toshiki Ayano 《Journal of Civil Engineering and Architecture》 2014年第11期1403-1413,共11页
关键词 耐硫酸 混凝土 细骨料 高炉渣 高炉矿渣微粉 高炉炉渣 二水石膏 排污结构
下载PDF
Effects of Al_2O_3 nanoparticles on properties of self compacting concrete with ground granulated blast furnace slag (GGBFS) as binder 被引量:9
7
作者 Ali NAZARI Shadi RIAHI 《Science China(Technological Sciences)》 SCIE EI CAS 2011年第9期2327-2338,共12页
In this work,strength assessments and percentage of water absorption of self compacting concrete containing ground granu-lated blast furnace slag (GGBFS) and Al2O3 nanoparticles as binder have been investigated.Portla... In this work,strength assessments and percentage of water absorption of self compacting concrete containing ground granu-lated blast furnace slag (GGBFS) and Al2O3 nanoparticles as binder have been investigated.Portland cement was replaced by different amounts of GGBFS and the properties of concrete specimens were investigated.Although it negatively impacts the physical and mechanical properties of concrete at early ages of curing,GGBFS was found to improve the physical and me-chanical properties of concrete up to 45 wt% at later ages.Al2O3 nanoparticles with the average particle size of 15 nm were added partially to concrete with the optimum content of GGBFS and physical and mechanical properties of the specimens were measured.Al2O3 nanoparticle as a partial replacement of cement up to 3.0 wt% could accelerate C-S-H gel formation as a re-sult of increased crystalline Ca(OH)2 amount at the early ages and hence increase strength and improve the resistance to water permeability of concrete specimens.The increase of the Al2O3 nanoparticles’ content by more than 3.0 wt% would cause the reduction of the strength because of the decreased crystalline Ca(OH)2 content required for C-S-H gel formation.Several em-pirical relationships have been presented to predict flexural and split tensile strength of the specimens by means of the corre-sponding compressive strength at a certain age of curing.Accelerated peak appearance in conduction calorimetry tests,more weight loss in thermogravimetric analysis and more rapid appearance of the peaks related to hydrated products in X-ray dif-fraction results,all indicate that Al2O3 nanoparticles could improve mechanical and physical properties of the concrete speci-mens. 展开更多
关键词 自密实混凝土 粒化高炉矿渣 纳米粒子 矿渣微粉 力学性能 混凝土地面 粘结剂 CA(OH)2
原文传递
Effect of ground granulated blast-furnace slag(GGBFS) and silica fume(SF) on chloride migration through concrete subjected to repeated loading 被引量:2
8
作者 ZHANG WuMan BA HengJing 《Science China(Technological Sciences)》 SCIE EI CAS 2012年第11期3102-3108,共7页
The effect of ground granulated blast-furnace slag(GGBFS) and silica fume(SF) on the chloride migration through concrete subjected to repeated loading was examined.Portland cement was replaced by 20%,30%,40% GGBFS and... The effect of ground granulated blast-furnace slag(GGBFS) and silica fume(SF) on the chloride migration through concrete subjected to repeated loading was examined.Portland cement was replaced by 20%,30%,40% GGBFS and 5%,10% SF,respectively.Five times repeated loadings were applied to specimens,the maximum loadings were 40% and 80% of the axial cylinder compressive strength(f′c),respectively.Chloride migration through concretes was evaluated using the rapid chloride migration test and the chloride concentration in the anode chamber was measured.The results indicate that the transport number of chloride through concrete containing 20% and 30% GGBFS replacements and 5% and 10% SF replacements is lower than that of the control concrete,but 40% GGBFS replacement increases the transport number of chloride.Five loadings at 40% f′cor 80% f′c increase the transport number of chloride for all mixes investigated in this study.5% SF replacement has a very close effect on the chloride permeability of concrete with 20% GGBFS when concrete is subjected to 40% f′cor 80% f′c. 展开更多
关键词 矿渣微粉混凝土 粒化高炉矿渣 氯离子浓度 离子迁移 重复荷载 硅粉 氯离子渗透性能 最大负荷
原文传递
Dry Mix Slag—High-Calcium Fly Ash Binder. Part Two: Durability
9
作者 Alexey Brykov Mikhail Voronkov 《Materials Sciences and Applications》 2024年第3期37-51,共15页
This work investigates durability of cement-free mortars with a binder comprised of ground granulated blast furnace slag (GGBFS) activated by high-calcium fly ash (HCFA) and sodium carbonate (Na<sub>2</sub>... This work investigates durability of cement-free mortars with a binder comprised of ground granulated blast furnace slag (GGBFS) activated by high-calcium fly ash (HCFA) and sodium carbonate (Na<sub>2</sub>CO<sub>3</sub>): the soundness, sulfate resistance, alkali-silica reactivity and efflorescence factors are considered. Results of tests show that such mortars are resistant to alkali-silica expansion. Mortars are also sulfate-resistant when the amount of HCFA in the complex binder is within a limit of 10 wt%. The fineness of fly ash determines its’ ability to activate GGBFS hydration, and influence soundness of the binder, early strength development, sulfate resistance and efflorescence behavior. The present article is a continuation of authors’ work, previously published in MSA, Vol. 14, 240-254. 展开更多
关键词 ground granulated blast-furnace slag High-Calcium Fly-Ash Sodium Car-bonate blast-furnace slag Binder DURABILITY ASR Sulfate Attack SOUNDNESS EFFLORESCENCE
下载PDF
TiO_2 nanoparticles' effects on properties of concrete using ground granulated blast furnace slag as binder 被引量:7
10
作者 NAZARI Ali RIAHI Shadi 《Science China(Technological Sciences)》 SCIE EI CAS 2011年第11期3109-3118,共10页
In the present study,compressive strength,pore structure,thermal behavior and microstructure characteristics of concrete containing ground granulated blast furnace slag and TiO2 nanoparticles as binder were investigat... In the present study,compressive strength,pore structure,thermal behavior and microstructure characteristics of concrete containing ground granulated blast furnace slag and TiO2 nanoparticles as binder were investigated.Portland cement was replaced by different amounts of ground granulated blast furnace slag and the properties of concrete specimens were investigated.Although it negatively impacts the properties of concrete at early ages,ground granulated blast furnace slag up to 45 wt% was found to improve the physical and mechanical properties of concrete at later ages.TiO2 nanoparticles with the average particle size of 15 nm were partially added to concrete with the optimum content of ground granulated blast furnace slag and physical and mechanical properties of the specimens were measured.TiO2 nanoparticle as a partial replacement of cement up to 3 wt% could accelerate C-S-H gel formation as a result of increased crystalline Ca(OH)2 amount at the early age of hydration and hence increase compressive strength of concrete.The increased TiO2 nanoparticles' content of more than 3 wt% may cause reduced compressive strength because of the decreased crystalline Ca(OH)2 content required for C-S-H gel formation and unsuitable dispersed nanoparticles in the concrete matrix.TiO2 nanoparticles could improve the pore structure of concrete and shift the distributed pores to harmless and less-harm pores. 展开更多
关键词 矿渣硅酸盐水泥 物理机械性能 纳米二氧化钛 混凝土地面 高炉炉渣 粘结剂 二氧化钛纳米粒子 CA(OH)2
原文传递
生石灰激发GGBS固化高含水率香港海相沉积物的物理力学性质研究 被引量:4
11
作者 蔡光华 周伊帆 +1 位作者 潘智生 李江山 《岩土力学》 EI CAS CSCD 北大核心 2022年第2期327-336,共10页
海相沉积物处置已成为一项全球范围的挑战。在传统固化/稳定化方法中,环境污染严重的波兰特水泥(PC)是一种被广泛使用的固化剂。在此背景下,一种环境友好型的固化剂(生石灰与粒化高炉矿渣(简称GGBS)的混合料)取代PC来用在土壤改良领域... 海相沉积物处置已成为一项全球范围的挑战。在传统固化/稳定化方法中,环境污染严重的波兰特水泥(PC)是一种被广泛使用的固化剂。在此背景下,一种环境友好型的固化剂(生石灰与粒化高炉矿渣(简称GGBS)的混合料)取代PC来用在土壤改良领域。使用生石灰激发GGBS固化处理高含水率海相沉积物,并与PC固化海相沉积物进行比较。通过物理、化学试验及无侧限抗压强度试验分析了生石灰-GGBS固化海相沉积物的物理、化学和强度特性。结果表明:与PC固化海相沉积物相比,生石灰-GGBS固化沉积物具有体积收缩大、含水率低和密度略高的物理特性。随着生石灰比例的降低和养护时间的延长,生石灰-GGBS固化沉积物的pH值逐渐降低。生石灰-GGBS固化沉积物的无侧限抗压强度呈先增大(生石灰:固化剂为0.05~0.15)后减小(生石灰:固化剂为0.15~0.3)再增大(生石灰:固化剂为0.3~0.4)的趋势;当生石灰与固化剂的比值为0.15及0.4时,强度达到最大值;当生石灰与固化剂的比值为0.15时,生石灰-GGBS固化沉积物达到的峰值强度是相同条件下PC固化沉积物强度的1.4倍。该研究结果证实了GGBS与少量生石灰组合可以替代PC来固化高含水率的天然沉积物。 展开更多
关键词 海洋沉积物 生石灰 粒化高炉矿渣(ggbs) 生石灰-固化剂比 力学性能
下载PDF
淋滤条件下GGBS-MgO固化铅污染黏土强度与溶出特性研究 被引量:13
12
作者 薄煜琳 于博伟 +1 位作者 杜延军 魏明俐 《岩土力学》 EI CAS CSCD 北大核心 2015年第10期2877-2891,2906,共16页
以粒化高炉矿渣粉-氧化镁(GGBS-MgO)固化铅污染黏土为研究对象,通过半动态淋滤试验,对GGBS-MgO在酸雨作用下的强度特性及溶出特性进行研究。通过对GGBS-MgO固化铅污染黏土半动态淋滤后pH值、针刺深度、无侧限抗压强度及浸出液中[Pb]、... 以粒化高炉矿渣粉-氧化镁(GGBS-MgO)固化铅污染黏土为研究对象,通过半动态淋滤试验,对GGBS-MgO在酸雨作用下的强度特性及溶出特性进行研究。通过对GGBS-MgO固化铅污染黏土半动态淋滤后pH值、针刺深度、无侧限抗压强度及浸出液中[Pb]、[Ca]、[Mg]元素浓度的测试,分析淋滤液初始pH值、掺量以及含铅不含铅对GGBS-MgO固化土强度特性的影响,讨论了初始淋滤液pH值、固化剂掺量对GGBS-MgO固化铅污染土累积铅、钙、镁溶出质量以及铅有效扩散系数的影响规律。结果表明,半动态淋滤试验使试样无侧限抗压强度qu较标准养护39d试样降低了2%~53%,且淋滤液初始pH=2对试样qu影响最大;在相同掺量、相同淋滤液初始pH值时,GGBS-MgO固化未污染土半动态淋滤后qu较水泥固化未污染土qu提高了12%~43%;且当固化剂掺量为18%时,固化铅污染土强度特性较水泥有明显优势,约为水泥固化铅污染土强度的1.3~1.8倍;且相同配比时,淋滤液初始pH=2表层的pH值约为pH=3、4、5、7的1/2;随着淋滤液初始pH值、半动态淋滤后qu及内部pH值的增加,针刺深度减小;针贯入阻力与qu存在幂指数关系。此外,累积铅、钙、镁溶出质量随着初始淋滤液pH值、固化剂掺量的增加而减少,在初始淋滤液pH=2时,Ai,Pb、Ai,Ca、Ai,Mg分别约为pH=3、4、5和7的29~222倍、1.7~4.4倍和12.0~80.3倍;固化剂掺量为12%时的累积溶出质量约是18%掺量时的1.1~2.0倍;铅有效扩散系数De随着初始淋滤液pH值的增加而降低,初始淋滤液pH=2时的De比pH=3~7的De高约3~5个数量级;且低于水泥固化铅污染土De,当初始淋滤液pH=7时,GGBS-MgO固化土De相比于水泥固化土低1~2个数量级。 展开更多
关键词 粒化高炉矿渣粉-氧化镁(ggbs-MgO) 固化/稳定化 半动态淋滤 铅污染 无侧限抗压强度 有效扩散系数
下载PDF
Setting and Strength Characteristics of Alkali-activated Carbonatite Cementitious Materials with Ground Slag Replacement 被引量:1
13
作者 赵三银 余其俊 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2006年第1期125-128,共4页
The effect of the ground granulated blast-furnace slag ( GGBFS ) addition, the modulus n ( mole rutio of SiO2 to Na2O ) and the concentrution of sodium silicate solution on the compressive strength of the materi... The effect of the ground granulated blast-furnace slag ( GGBFS ) addition, the modulus n ( mole rutio of SiO2 to Na2O ) and the concentrution of sodium silicate solution on the compressive strength of the material, i e alkuli-activated carbonatite cemeutitious material ( AACCM for short ) was investiguted. In addition, it is found that barium chloride has a sutisfiwtory retarding effect on the setting of AACCM in which more than 20% ( by mass ) ground carbonatite was replaced by GGBFS. As a result, a cementitious material, in which ground carbonatite rock served as dominative starting material, with 3-day and 28-day compressive strength greuter them 30 MPa and 60 MPa and with continuous strength gain beyond 90 days was obtained. 展开更多
关键词 alkali activated cement retardaion compressive strength CARBONATITE granulated blast- furnace slag
下载PDF
Effect of Content and Fineness of GGBS on Pore Structure of Cement Paste
14
作者 代金鹏 WANG Qicai +2 位作者 ZHANG Xin BI Ruixiao DU Wentao 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2022年第5期933-947,共15页
The effect of the content and specific surface area of the ground granulated blast furnace slag (GGBS) on the pore structure of the cement paste was determined through the low-field nuclear magnetic resonance (NMR).Th... The effect of the content and specific surface area of the ground granulated blast furnace slag (GGBS) on the pore structure of the cement paste was determined through the low-field nuclear magnetic resonance (NMR).The Pearson correlation analysis method was used to calculate the correlation coefficient between the porosity and age of cement paste,the specific surface area of GGBS and the content of GGBS.The test results exhibited that the porosity of the cement paste with different ageing durations gradually decreased on increasing the content and specific surface area of GGBS.The content and specific surface area of GGBS had a negligible effect on the 1-10 nm size gel pores in the cement paste,whereas,had a significant effect on the 10-100 nm size capillary pores.In addition,these parameters did not affect the final most probable pore size of the cement paste.The correlation between age and porosity was the largest,and the correlation between GGBS content and porosity was greater than that between GGBS specific surface area and porosity.Moreover,a modified pore structure model was successfully developed to effectively predict the pore structure of the GGBS based cement paste. 展开更多
关键词 ground granulated blast furnace slag pore structure FINENESS cement paste low-field nuclear magnetic resonance
下载PDF
The Preparation of Porous Activated Slag Granules/TiO_(2)Photocatalyst and Its De-NO_(x)Performance
15
作者 朱立德 CHEN Jing +4 位作者 SI Heyang FANG Yongle WANG Xinyu WANG Zongsen 杨露 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2021年第3期347-352,共6页
The porous structure and honeycombed structure of granulated blast furnace slag formed by alkali activation(AGBFS)can be used as a promising photocatalysts substrate for the photocatalytic removal of atmospheric or wa... The porous structure and honeycombed structure of granulated blast furnace slag formed by alkali activation(AGBFS)can be used as a promising photocatalysts substrate for the photocatalytic removal of atmospheric or water pollutants.In this study,photocatalytic activated slag granules were synthesized by loading TiO_(2)on AGBFS with immersion method.The physicochemical properties and NO_(x)removal performance of activated slag granules/TiO_(2)photocatalysts were studied by X-ray diffraction(XRD),scanning electron microscope(SEM)and photocatalytic performance test.The effects of slag particle sizes and nano-TiO_(2)loading concentrations on photocatalytic efficiencies of NO_(x)removal were also investigated.It was found that the De-NO_(x)performance of activated slag granules/TiO_(2)photocatalyst increased with the increasing of slag particle size in low TiO_(2)loading concentration situation,while increasing the TiO_(2)loading concentration would result in the opposite De-NO_(x)performance as slag size increased.Nevertheless,for the same size activated slag,the photocatalytic efficiency of activated slag granules/TiO_(2)photocatalyst gradually improved with the increase of loading concentration of TiO_(2). 展开更多
关键词 granulated blast furnace slag porous structure alkali-activation photocatalysis NO_(x)
下载PDF
Effect of GGBS on performance deterioration of non-dispersible underwater concrete in saline soil
16
作者 Fang Liu BaoMin Wang +2 位作者 GuoRong Tao Tao Luo XiaoSa Yuan 《Research in Cold and Arid Regions》 CSCD 2022年第2期120-137,共18页
In saline soil areas,there are a large number of ions in soil or water environments,such as Cl^(-)and SO_(4)^(2-),which have strong corrosive interactions with buildings.To study the deterioration of non-dispersible u... In saline soil areas,there are a large number of ions in soil or water environments,such as Cl^(-)and SO_(4)^(2-),which have strong corrosive interactions with buildings.To study the deterioration of non-dispersible underwater concrete in sulfate,chloride,and mixed salt environments,the compressive strength and deterioration resistance coefficient of the studied concrete mixed with different amounts of ground granulated blast-furnace slag(GGBS)were analyzed in this paper.At the same time,the micro morphology and corrosion products distribution of the studied concrete were observed by means of SEM,plus XRD diffraction,TG-DTG and FT-IR analyses to explore the influence of corrosive solutions on the hydration products of concrete.We also analyzed the mechanism of improving the deterioration resistance of the studied concrete by adding GGBS in a saline soil environment.The results show that the compressive strength of the studied concrete in a chloride environment was close to that in a fresh water environment,which means that chloride has no adverse effect on compressive strength.The deterioration of the studied concrete was most serious in a sulfate environment,followed by mixed salt environment,and the lowest in a chloride environment.In addition,by adding GGBS,the compressive strength and deterioration resistance of the studied concrete could be effectively improved. 展开更多
关键词 saline soil non-dispersible underwater concrete granulated blast furnace slag deterioration resistance mechanism analysis
下载PDF
Remediation of electric arc furnace dust leachate by the use of cementitious materials: A column-leaching test
17
作者 Josee Duchesne Guylaine Laforest 《Chinese Journal Of Geochemistry》 EI CAS 2006年第B08期99-99,共1页
关键词 工业固体废物 环境管理 微量元素 电弧炉
下载PDF
Dry Mix Slag—High-Calcium Fly Ash Binder. Part One: Hydration and Mechanical Properties
18
作者 Alexey Brykov Mikhail Voronkov 《Materials Sciences and Applications》 2023年第3期240-254,共15页
High-calcium fly ash (HCFA)—a residue of high-temperature coal combustion at thermal power plants, in combination with sodium carbonate presents an effective hardening activator of ground granulated blast-furnace sla... High-calcium fly ash (HCFA)—a residue of high-temperature coal combustion at thermal power plants, in combination with sodium carbonate presents an effective hardening activator of ground granulated blast-furnace slag (GGBFS). Substitution of 10% - 30% of GGBFS by HCFA and premixing of 1% - 3% Na2CO3 to this dry binary binder was discovered to give mortar compression strength of 10 - 30 to 30 - 45 MPa at 7 and 28 days when moist cured at ambient temperature. High-calcium fly ash produced from low-temperature combustion of fuel, like in circulating fluidized bed technology, reacts with water readily and is itself a good hardening activator for GGBFS, so introduction of Na<sub>2</sub>CO<sub>3</sub> into such mix has no noticeable effect on the mortar strength. However, low-temperature HCFA has higher water demand, and the strength of mortar is compromised by this factor. As of today, our research is still ongoing, and we expect to publish more data on different aspects of durability of proposed GGBFS-HCFA binder later. 展开更多
关键词 ground granulated blast-furnace slag blast-furnace slag Activation High-Calcium Fly-Ash Sodium Carbonate blast-furnace slag Binder
下载PDF
钢渣-矿渣基胶凝材料的协同水化机理
19
作者 南雪丽 杨旭 +2 位作者 张宇 唐维斌 张富强 《建筑材料学报》 EI CAS CSCD 北大核心 2024年第4期366-374,共9页
通过胶砂强度试验及X射线衍射仪(XRD)、热失重分析(TG-DTG)、扫描电镜-能谱仪(SEM-EDS)等微观测试技术,对不同配合比钢渣-矿渣基胶凝材料的力学性能、水化产物及其水化硬化过程进行了研究.结果表明:当胶凝材料的n(CaO+MgO)/n(SiO2+Al2O3... 通过胶砂强度试验及X射线衍射仪(XRD)、热失重分析(TG-DTG)、扫描电镜-能谱仪(SEM-EDS)等微观测试技术,对不同配合比钢渣-矿渣基胶凝材料的力学性能、水化产物及其水化硬化过程进行了研究.结果表明:当胶凝材料的n(CaO+MgO)/n(SiO2+Al2O3)=0.90时,其水化后期有较多的水化硅酸钙、水化铝酸钙凝胶生成,微观结构更加致密,力学性能表现最优,28 d抗压强度和抗折强度分别达到20.20、7.25 MPa;pH值的变化反映出协同水化效应的关键在于钢渣活性矿物的溶解和矿渣的二次火山灰反应,钢渣和矿渣的最佳配合比可以保证水化程度有较高的水平. 展开更多
关键词 钢渣 高炉矿渣 胶凝材料 协同水化效应 水化反应
下载PDF
热养护对大体积混凝土不同活性矿物掺合料早期水化性能的影响
20
作者 夏雨 高妮 +2 位作者 王永维 刘竞怡 何文敏 《粉煤灰综合利用》 CAS 2024年第1期6-12,共7页
研究了大体积混凝土中粉煤灰和矿粉在热养护条件下对水泥早期抗压强度的影响,并通过水化热、XRD以及TGA等技术手段阐述了水化反应过程。结果表明:常温时,粉煤灰和矿粉加入均会大幅度降低早期强度;热养护时,粉煤灰-水泥体系的早期强度仍... 研究了大体积混凝土中粉煤灰和矿粉在热养护条件下对水泥早期抗压强度的影响,并通过水化热、XRD以及TGA等技术手段阐述了水化反应过程。结果表明:常温时,粉煤灰和矿粉加入均会大幅度降低早期强度;热养护时,粉煤灰-水泥体系的早期强度仍远低于空白组;但随着矿粉用量的增加和热养护温度的升高,体系早期强度与空白组的差距逐渐减小;50℃养护时,矿粉-水泥体系的早期强度高于空白组。这说明在热激发条件下,粉煤灰的早期火山灰反应仍然有限,但矿粉的早期水化活性显著提高,通过火山灰反应和自水化反应完成水化产物的积累。 展开更多
关键词 粉煤灰 矿粉 热养护 水化过程 水化产物
下载PDF
上一页 1 2 19 下一页 到第
使用帮助 返回顶部