期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Optimum selection of common master image for ground deformation monitoring based on PS-DInSAR technique 被引量:6
1
作者 Zhu Zhengwei Zhou Jianjiang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2009年第6期1213-1220,共8页
Considering the joint effects of various factors such as temporal baseline, spatial baseline, thermal noise, the difference of Doppler centroid frequency and the error of data processing on the interference correlatio... Considering the joint effects of various factors such as temporal baseline, spatial baseline, thermal noise, the difference of Doppler centroid frequency and the error of data processing on the interference correlation, an optimum selection method of common master images for ground deformation monitoring based on the permanent scatterer and differential SAR interferometry (PS-DInSAR) technique is proposed, in which the joint correlation coeficient is used as the evaluation function. The principle and realization method of PS-DInSAR technology is introduced, the factors affecting the DInSAR correlation are analysed, and the joint correlation function model and its solution are presented. Finally an experiment for the optimum selection of common master images is performed by using 25 SAR images over Shanghai taken by the ERS-1/2 as test data. The results indicate that the optimum selection method for PS-DInSAR common master images is effective and reliable. 展开更多
关键词 remote sensing ground deformation monitoring differential SAR interferometry common master image permanent scatterer synthetic aperture radar image analysis.
下载PDF
Influence of dynamic pressure on deep underground soft rock roadway support and its application 被引量:4
2
作者 Meng Qingbin Han Lijun +4 位作者 Chen Yanlong Fan Jiadong Wen Shengyong Yu Liyuan Li Hao 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2016年第5期903-912,共10页
Due to high ground stress and mining disturbance, the deformation and failure of deep soft rock roadway is serious, and invalidation of the anchor net-anchor cable supporting structure occurs. The failure characterist... Due to high ground stress and mining disturbance, the deformation and failure of deep soft rock roadway is serious, and invalidation of the anchor net-anchor cable supporting structure occurs. The failure characteristics of roadways revealed with the help of the ground pressure monitoring. Theoretical analysis was adopted to analyze the influence of mining disturbance on stress distribution in surrounding rock,and the change of stress was also calculated. Considering the change of stress in surrounding rock of bottom extraction roadway, the displacement, plastic zone and distribution law of principal stress difference under different support schemes were studied by means of FLAC3D. The supporting scheme of U-shaped steel was proposed for bottom extraction roadway that underwent mining disturbance. We carried out a similarity model test to verify the effect of support in dynamic pressure. Monitoring results demonstrated the change rules of deformation and stress of surrounding rock in different supporting schemes. The supporting scheme of U-shaped steel had an effective control on deformation of surrounding rock. The scheme was successfully applied in underground engineering practice, and achieved good technical and economic benefits. 展开更多
关键词 Deep soft rock roadway Dynamic pressure impact Similarity model test Combined support ground pressure monitoring
下载PDF
Progress of International Meridian Circle Program
3
作者 LIU William MICHEL Blanc +9 位作者 WANG Chi XU Jiyao LI Hui REN Liwen LIU Zhengkuan ZHU Yajun LI Guozhu LI Lei ZEREN Zhima YANG Fang 《空间科学学报》 CAS CSCD 北大核心 2022年第4期584-587,共4页
Based on the Chinese Meridian Project(CMP),the International Meridian Circle Program(IMCP)aims to coordinate the deployment of a comprehensive ground-based monitoring network along the 120°E-60°W Great Merid... Based on the Chinese Meridian Project(CMP),the International Meridian Circle Program(IMCP)aims to coordinate the deployment of a comprehensive ground-based monitoring network along the 120°E-60°W Great Meridian Circle to track the propagation and evolution of space weather events from the Sun to the Earth,as well as the imprints of other major natural and anthropic hazards on the ionosphere,the middle and upper atmosphere.Currently,we have completed the IMCP headquarters building in Beijing and established the China-Brazil Joint Laboratory for Space Weather in cooperation with Brazil.Meanwhile,the Chinese Meridian Project PhaseⅡand different components of the IMCP observation system are under construction. 展开更多
关键词 Chinese Meridian Project(CMP) Global ground monitoring Space weather International Meridian Circle Program(IMCP)
下载PDF
An analytical model to predict the volume of sand during drilling and production 被引量:3
4
作者 Raoof Gholami Bernt Aadnoy +1 位作者 Vamegh Rasouli Nikoo Fakhari 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2016年第4期521-532,共12页
Over the past few decades, many optical fiber sensing techniques have been developed. Among these available sensing methods, optical fiber Bragg grating(FBG) is probably the most popular one. With its unique capabil... Over the past few decades, many optical fiber sensing techniques have been developed. Among these available sensing methods, optical fiber Bragg grating(FBG) is probably the most popular one. With its unique capabilities, FBG-based geotechnical sensors can be used as a sensor array for distributive(profile) measurements, deployed under water(submersible), for localized high resolution and/or differential measurements. The authors have developed a series of FBG-based transducers that include inclination, linear displacement and gauge/differential pore pressure sensors. Techniques that involve the field deployment of FBG inclination, extension and pore-pressure sensor arrays for automated slope stability and ground subsidence monitoring have been developed. The paper provides a background of FBG and the design concepts behind the FBG-based field monitoring sensors. Cases of field monitoring using the FBG sensor arrays are presented, and their practical implications are discussed. 展开更多
关键词 monitoring ground stability Subsidence
下载PDF
Twenty years of coal mining-induced subsidence in the Upper Silesia in Poland identified using InSAR
5
作者 Maria Przylucka Zbigniew Kowalski Zbigniew Perski 《International Journal of Coal Science & Technology》 EI CAS CSCD 2022年第6期64-74,共11页
The paper presents the results of terrain subsidence monitoring in Poland's Upper Silesian Coal Basin(USCB)mining area using Differential Interferometry Synthetic Aperture Radar(DInSAR)and Persistent Scatterer Int... The paper presents the results of terrain subsidence monitoring in Poland's Upper Silesian Coal Basin(USCB)mining area using Differential Interferometry Synthetic Aperture Radar(DInSAR)and Persistent Scatterer Interferometry(PSI).The study area accounts for almost three million inhabitants where mining which started in the 19th century,has produced severe damage to buildings and urban infrastructures in past years.The analysis aimed to combine eight different datasets,processed in two techniques,coming from various sensors and covering different periods.As a result,a map of areas that have been exposed to subsidence within 3045 square kilometers was obtained.The map covers a period of twenty years of intensive mining activities,i.e.1992-2012.A total of 81 interferograms were used in the study.The interferograms allowed not only to determine subsidence troughs(basins)formed from 1992 to 2012 but also to observe subsidence development over time.The work also included five sets of PSI processing,covering different temporal and spatial ranges,which were used to determine zones of residual subsidence.Based on InSAR datasets,an area of 521 square kilometers under the influence of mining activities were determined.Within the subsiding zones,an area of 312.5 square kilometers of the rapid increase in subsidence was identified on the interferograms.The study of combined different InSAR datasets provided large-area and long-term information on the impact of mining activities in the Upper Silesia Coal Basin. 展开更多
关键词 Surface subsidence Mining subsidence INSAR ground subsidence monitoring Upper Silesia Coal Basin
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部