In the analysis and design of important structures with relatively long life spans, there is a need to generate strong motion data for possible large events. The source of an earthquake is characterized by the spatial...In the analysis and design of important structures with relatively long life spans, there is a need to generate strong motion data for possible large events. The source of an earthquake is characterized by the spatial distribution of slip on the fault plane. For future events, this is unknown. In this paper, a stochastic earthquake source model is developed to address this issue. Here, 1D and 2D stochastic models for slip distribution developed by Lavallée et al.(2006) are used. The random field associated with the slip distribution is heavy-tailed stable distribution which can be used for large events. Using 236 past rupture models, the spectral scaling parameter and the four stable or Levy's parameters against empirical relationship for known quantities like magnitude or fault length are developed. The model is validated with data from 411 stations of 1999 Chi-Chi earthquake. The simulated response spectrum showed good agreement to actual data. Further the proposed model is used to generate ground motion for the 1993 Killari Earthquake where strong motion data is not available. The simulated mean peak ground velocity was in turn related to the intensity(MSK) and compared against values in the literature.展开更多
Taking Tianjin as an example, this paper proposed a methodology and process for evaluating near-fault strong ground motions from future earthquakes to mitigate earthquake damage for the metropolitan area and important...Taking Tianjin as an example, this paper proposed a methodology and process for evaluating near-fault strong ground motions from future earthquakes to mitigate earthquake damage for the metropolitan area and important engineering structures. The result of strong ground motion was predicted for Tianjin main faults by the hybrid method which mainly con- sists of 3D finite difference method and stochastic Green's function. Simulation is performed for 3D structures of Tianjin re- gion and characterized asperity models. The characterized asperity model describing source heterogeneity is introduced fol- lowing the fault information from the project of Tianjin Active Faults and Seismic Hazard Assessment. We simulated the worst case that two earthquakes separately occur. The results indicate that the fault position, rupture process and the sedi- mentary deposits of the basin significantly affect amplification of the simulated ground motion. Our results also demonstrate the possibility of practical simulating wave propagation including basin induced surface waves in broad frequency-band, for seismic hazard analysis near the fault from future earthquakes in urbanized areas.展开更多
Strong ground motion parameters for Shillong plateau of northeastern India are examined. Empirical relations are obtained for main parameters of ground motions as a function of earthquake magnitude, fault type, source...Strong ground motion parameters for Shillong plateau of northeastern India are examined. Empirical relations are obtained for main parameters of ground motions as a function of earthquake magnitude, fault type, source depth, velocity characterization of medium and distance. Correlation between ground motion parameters and characteristics of seismogenic zones are established. A new attenuation relation for peak ground acceleration is developed, which predicts higher expected PGA in the region. Parameters of strong motions, particularly the predominant periods and duration of vibrations, depend on the morphology of the studied area. The study measures low estimates of logarithmic width in Shillong plateau. The attenuation relation estimated for pulse width critically indicates increased pulse width dependence on the logarithmic distance which accounts for geometrical spreading and anelastic attenuation.展开更多
The concept of "numerical Green’s functions" (NGF or Green’s function database) is developed. The basic idea is: a large seismic fault is divided into subfaults of appropriate size, for which synthetic Green’s...The concept of "numerical Green’s functions" (NGF or Green’s function database) is developed. The basic idea is: a large seismic fault is divided into subfaults of appropriate size, for which synthetic Green’s functions at the surface (NGF) are calculated and stored. Consequently, ground motions from arbitrary kinematic sources can be simulated, rapidly, for the whole fault or parts of it by superposition. The target fault is a simplified, vertical model of the Newport-Inglewood fault in the Los Angeles basin. This approach and its functionality are illustrated by investigating the variations of ground motions (e.g. peak ground velocity and synthetic seismograms) due to the source complexity. The source complexities are considered with two respects: hypocenter location and slip history. The results show a complex behavior, with dependence of absolute peak ground velocity and their variation on source process directionality, hypocenter location, local structure, and static slip asperity location. We concluded that combining effect due to 3-D structure and finite-source is necessary to quan- tify ground motion characteristics and their variations. Our results will facilitate the earthquake hazard assessment projects.展开更多
The non-axisymmetrical vibration of elastic circular plate resting on a layered transversely isotropic saturated ground was studied. First, the 3-d dynamic equations in cylindrical coordinate for transversely isotropi...The non-axisymmetrical vibration of elastic circular plate resting on a layered transversely isotropic saturated ground was studied. First, the 3-d dynamic equations in cylindrical coordinate for transversely isotropic saturated soils were transformed into a group of governing differential equations with 1-order by the technique of Fourier expanding with respect to azimuth, and the state equation is established by Hankel integral transform method, furthermore the transfer matrixes within layered media are derived based on the solutions of the state equation. Secondly, by the transfer matrixes, the general solutions of dynamic response for layered transversely isotropic saturated ground excited by an arbitrary harmonic force were established under the boundary conditions, drainage conditions on the surface of ground as well as the contact conditions. Thirdly, the problem was led to a pair of dual integral equations describing the mixed boundaryvalue problem which can be reduced to the Fredholm integral equations of the second kind solved by numerical procedure easily. At the end of this paper, a numerical result concerning vertical and radical displacements both the surface of saturated ground and plate is evaluated.展开更多
文摘In the analysis and design of important structures with relatively long life spans, there is a need to generate strong motion data for possible large events. The source of an earthquake is characterized by the spatial distribution of slip on the fault plane. For future events, this is unknown. In this paper, a stochastic earthquake source model is developed to address this issue. Here, 1D and 2D stochastic models for slip distribution developed by Lavallée et al.(2006) are used. The random field associated with the slip distribution is heavy-tailed stable distribution which can be used for large events. Using 236 past rupture models, the spectral scaling parameter and the four stable or Levy's parameters against empirical relationship for known quantities like magnitude or fault length are developed. The model is validated with data from 411 stations of 1999 Chi-Chi earthquake. The simulated response spectrum showed good agreement to actual data. Further the proposed model is used to generate ground motion for the 1993 Killari Earthquake where strong motion data is not available. The simulated mean peak ground velocity was in turn related to the intensity(MSK) and compared against values in the literature.
基金supported by the National Natural Science Foundation of China (40674016)Earthquake Research Fund of Ministry of Science and Technology of China ((2007)203/8-53)
文摘Taking Tianjin as an example, this paper proposed a methodology and process for evaluating near-fault strong ground motions from future earthquakes to mitigate earthquake damage for the metropolitan area and important engineering structures. The result of strong ground motion was predicted for Tianjin main faults by the hybrid method which mainly con- sists of 3D finite difference method and stochastic Green's function. Simulation is performed for 3D structures of Tianjin re- gion and characterized asperity models. The characterized asperity model describing source heterogeneity is introduced fol- lowing the fault information from the project of Tianjin Active Faults and Seismic Hazard Assessment. We simulated the worst case that two earthquakes separately occur. The results indicate that the fault position, rupture process and the sedi- mentary deposits of the basin significantly affect amplification of the simulated ground motion. Our results also demonstrate the possibility of practical simulating wave propagation including basin induced surface waves in broad frequency-band, for seismic hazard analysis near the fault from future earthquakes in urbanized areas.
基金ILTP (Integrated Long Term Project) Scheme towards Indo-Russian Collaborative Project
文摘Strong ground motion parameters for Shillong plateau of northeastern India are examined. Empirical relations are obtained for main parameters of ground motions as a function of earthquake magnitude, fault type, source depth, velocity characterization of medium and distance. Correlation between ground motion parameters and characteristics of seismogenic zones are established. A new attenuation relation for peak ground acceleration is developed, which predicts higher expected PGA in the region. Parameters of strong motions, particularly the predominant periods and duration of vibrations, depend on the morphology of the studied area. The study measures low estimates of logarithmic width in Shillong plateau. The attenuation relation estimated for pulse width critically indicates increased pulse width dependence on the logarithmic distance which accounts for geometrical spreading and anelastic attenuation.
基金funding from the International Quality Network:Georisk (Ger-man Academic Exchange Service),and the Elite Gradu-ate College THESIS (Bavarian Government)support from the European Hu-man Resources Mobility Program (Research Training Network SPICE)
文摘The concept of "numerical Green’s functions" (NGF or Green’s function database) is developed. The basic idea is: a large seismic fault is divided into subfaults of appropriate size, for which synthetic Green’s functions at the surface (NGF) are calculated and stored. Consequently, ground motions from arbitrary kinematic sources can be simulated, rapidly, for the whole fault or parts of it by superposition. The target fault is a simplified, vertical model of the Newport-Inglewood fault in the Los Angeles basin. This approach and its functionality are illustrated by investigating the variations of ground motions (e.g. peak ground velocity and synthetic seismograms) due to the source complexity. The source complexities are considered with two respects: hypocenter location and slip history. The results show a complex behavior, with dependence of absolute peak ground velocity and their variation on source process directionality, hypocenter location, local structure, and static slip asperity location. We concluded that combining effect due to 3-D structure and finite-source is necessary to quan- tify ground motion characteristics and their variations. Our results will facilitate the earthquake hazard assessment projects.
基金Project supported by the National Natural Science Foundation of China(No.50678108)the Natural Science Foundation of Zhejiang Province(No.Y106264 )
文摘The non-axisymmetrical vibration of elastic circular plate resting on a layered transversely isotropic saturated ground was studied. First, the 3-d dynamic equations in cylindrical coordinate for transversely isotropic saturated soils were transformed into a group of governing differential equations with 1-order by the technique of Fourier expanding with respect to azimuth, and the state equation is established by Hankel integral transform method, furthermore the transfer matrixes within layered media are derived based on the solutions of the state equation. Secondly, by the transfer matrixes, the general solutions of dynamic response for layered transversely isotropic saturated ground excited by an arbitrary harmonic force were established under the boundary conditions, drainage conditions on the surface of ground as well as the contact conditions. Thirdly, the problem was led to a pair of dual integral equations describing the mixed boundaryvalue problem which can be reduced to the Fredholm integral equations of the second kind solved by numerical procedure easily. At the end of this paper, a numerical result concerning vertical and radical displacements both the surface of saturated ground and plate is evaluated.