This paper presents an efficient algorithm for reducing RLC power/ground network complexities by exploitation of the regularities in the power/ground networks. The new method first builds the equivalent models for man...This paper presents an efficient algorithm for reducing RLC power/ground network complexities by exploitation of the regularities in the power/ground networks. The new method first builds the equivalent models for many series RLC-current chains based on their Norton's form companion models in the original networks,and then the precondition conjugate gradient based iterative method is used to solve the reduced networks,which are symmetric positive definite. The solutions of the original networks are then back solved from those of the reduced networks.Experimental results show that the complexities of reduced networks are typically significantly smaller than those of the original circuits, which makes the new algorithm extremely fast. For instance, power/ground networks with more than one million branches can be solved in a few minutes on modern Sun workstations.展开更多
A CAD tool based on a group of efficient algorithms to verify,design,and optimize power/ground networks for standard cell model is presented.Nonlinear programming techniques,branch and bound algorithms and incomplete ...A CAD tool based on a group of efficient algorithms to verify,design,and optimize power/ground networks for standard cell model is presented.Nonlinear programming techniques,branch and bound algorithms and incomplete Cholesky decomposition conjugate gradient method (ICCG) are the three main parts of our work.Users can choose nonlinear programming method or branch and bound algorithm to satisfy their different requirements of precision and speed.The experimental results prove that the algorithms can run very fast with lower wiring resources consumption.As a result,the CAD tool based on these algorithms is able to cope with large-scale circuits.展开更多
The above-ground net primary production(ANPP) and the precipitation-use efficiency(PUE) regulate the carbon and water cycles in grassland ecosystems, but the relationships among the ANPP, PUE and precipitation are sti...The above-ground net primary production(ANPP) and the precipitation-use efficiency(PUE) regulate the carbon and water cycles in grassland ecosystems, but the relationships among the ANPP, PUE and precipitation are still controversial. We selected 717 grassland sites with ANPP and mean annual precipitation(MAP) data from 40 publications to characterize the relationships ANPP–MAP and PUE–MAP across different grassland types. The MAP and ANPP showed large variations across all grassland types, ranging from 69 to 2335 mm and 4.3 to 1706 g m^(-2), respectively. The global maximum PUE ranged from 0.19 to 1.49 g m^(-2) mm^(-1) with a unimodal pattern. Analysis using the sigmoid function explained the ANPP–MAP relationship best at the global scale. The gradient of the ANPP–MAP graph was small for arid and semi-arid sites(MAP <400 mm). This study improves our understanding of the relationship between ANPP and MAP across dry grassland ecosystems. It provides new perspectives on the prediction and modeling of variations in the ANPP for different grassland types along precipitation gradients.展开更多
[Objective] The aim was to study the relevance of grassland temperature and ground net radiation in Guilin.[Method] By dint of ground observation data and net radiation of national benchmark climate station in Guilin ...[Objective] The aim was to study the relevance of grassland temperature and ground net radiation in Guilin.[Method] By dint of ground observation data and net radiation of national benchmark climate station in Guilin from 2007 to 2009,the changes of grassland temperature and ground net radiation were expounded and their relations were pointed out.[Result] The annual changes trends of grassland temperature and ground net radiation in Guilin were basically the same.Monthly average maximum value all appeared in summer(July to August).Monthly average lowest value appeared in winter(December to next January);monthly average grassland temperature and monthly average ground net radiation had positive relation.Grassland temperature and ground net radiation had basically same distribution in four seasons.The average largest value of ground net radiation in summer was the largest and average smallest value was the smallest;the average largest value of ground net radiation in cloudy days was the smallest and average minimum value was the largest;the daily difference was the largest in sunny day and daily difference was the smallest in cloudy day.The daily changes trend of grassland temperature and ground net radiation in different weather state were basically the same;when it was sunny or cloudy,the daily largest value of grassland temperature and ground net radiation occurred between 15:00 and 19:00;when it was overcast,there was no distinct peak and daily changes.The largest value of the daily extreme value of grassland temperature and ground net radiation took place from 12:00 to 15:00.The daily lowest value took place from 20:00 to 07:00 on the next day.[Conclusion] The study provided reference for the analysis of temperature changes in Guilin.展开更多
The distribution of the nuclear ground-state spin in a two-body random ensemble(TBRE)was studied using a general classification neural network(NN)model with two-body interaction matrix elements as input features and t...The distribution of the nuclear ground-state spin in a two-body random ensemble(TBRE)was studied using a general classification neural network(NN)model with two-body interaction matrix elements as input features and the corresponding ground-state spins as labels or output predictions.The quantum many-body system problem exceeds the capability of our optimized NNs in terms of accurately predicting the ground-state spin of each sample within the TBRE.However,our NN model effectively captured the statistical properties of the ground-state spin because it learned the empirical regularity of the ground-state spin distribution in TBRE,as discovered by physicists.展开更多
This paper proposes a novel algorithm, which can be used to model and analyzemesh tree hybrid power/ground distribution networks with multiple voltage supply in time domain.Not only this algorithm enhances common meth...This paper proposes a novel algorithm, which can be used to model and analyzemesh tree hybrid power/ground distribution networks with multiple voltage supply in time domain.Not only this algorithm enhances common method''s ability on analysis of power/ground network withirregular topology, but also very high accuracy it keeps. The accuracy and stability of thisalgorithm is proved using strict math method in this paper. Also, the usage of both preconditiontechnique based on Incomplete Choleskey Decomposition and fast variable elimination technique hasimproved the algorithm''s efficiency a lot. Experimental results show that it can finish the analysisof power/ground network with enormous, size within very short time. Also, this algorithm can beapplied to analyze the clock network, bus network, and signal network without buffer under highworking frequency because of the independence of the topology.展开更多
The methodology for adaptive control of helicopter ground resonance with magnetorheological (MR) damper is presented. The adaptive inverse control method is used to control the output damping force of MR damper and ...The methodology for adaptive control of helicopter ground resonance with magnetorheological (MR) damper is presented. The adaptive inverse control method is used to control the output damping force of MR damper and the range of the damping force is given. Through the adaptive inverse control, the damping force of MR damper is fit to a desired damping force. With the background of applying MR damper to control of helicopter ground resonance, a model of loss force and an adaptive arithmetic for stabilization of the coupled rotor/fuselage system are presented. The simulation shows that the controller presented in this paper can stabilize the rotor/fuselage coupling system quickly and control the helicopter ground resonance effectively.展开更多
This study presents an application of artificial neural network(ANN)and Bayesian network(BN)for evaluation of jamming risk of the shielded tunnel boring machines(TBMs)in adverse ground conditions such as squeezing gro...This study presents an application of artificial neural network(ANN)and Bayesian network(BN)for evaluation of jamming risk of the shielded tunnel boring machines(TBMs)in adverse ground conditions such as squeezing grounds.The analysis is based on database of tunneling cases by numerical modeling to evaluate the ground convergence and possibility of machine entrapment.The results of initial numerical analysis were verified in comparison with some case studies.A dataset was established by performing additional numerical modeling of various scenarios based on variation of the most critical parameters affecting shield jamming.This includes compressive strength and deformation modulus of rock mass,tunnel radius,shield length,shield thickness,in situ stresses,depth of over-excavation,and skin friction between shield and rock.Using the dataset,an ANN was trained to predict the contact pressures from a series of ground properties and machine parameters.Furthermore,the continuous and discretized BNs were used to analyze the risk of shield jamming.The results of these two different BN methods are compared to the field observations and summarized in this paper.The developed risk models can estimate the required thrust force in both cases.The BN models can also be used in the cases with incomplete geological and geomechanical properties.展开更多
Definite-time zero-sequence over-current protection is presently used in systems whose neutral point is grounded by a low resistance(low-resistance grounding systems).These systems frequently malfunction owing to thei...Definite-time zero-sequence over-current protection is presently used in systems whose neutral point is grounded by a low resistance(low-resistance grounding systems).These systems frequently malfunction owing to their high settings of the action value when a high-impedance grounding fault occurs.In this study,the relationship between the zero-sequence currents of each feeder and the neutral branch was analyzed.Then,a grounding protection method was proposed on the basis of the zero-sequence current ratio coefficient.It is defined as the ratio of the zero-sequence current of the feeder to that of the neutral branch.Nonetheless,both zero-sequence voltage and zero-sequence current are affected by the transition resistance,The influence of transition resistance can be eliminated by calculating this coefficient.Therefore,a method based on the zero-sequence current ratio coefficient was proposed considering the significant difference between the faulty feeder and healthy feeder.Furthermore,unbalanced current can be prevented by setting the starting current.PSCAD simulation results reveal that the proposed method shows high reliability and sensitivity when a high-resistance grounding fault occurs.展开更多
The spaceborne precipitation radar onboard the Tropical Rainfall Measuring Mission satellite (TRMM PR) can provide good measurement of the vertical structure of reflectivity, while ground radar (GR) has a relative...The spaceborne precipitation radar onboard the Tropical Rainfall Measuring Mission satellite (TRMM PR) can provide good measurement of the vertical structure of reflectivity, while ground radar (GR) has a relatively high horizontal resolution and greater sensitivity. Fusion of TRMM PR and GR reflectivity data may maximize the advantages from both instruments. In this paper, TRMM PR and GR reflectivity data are fused using a neural network (NN)-based approach. The main steps included are: quality control of TRMM PR and GR reflectivity data; spatiotemporal matchup; GR calibration bias correction; conversion of TRMM PR data from Ku to S band; fusion of TRMM PR and GR reflectivity data with an NN method: interpolation of reflectivity data that are below PR's sensitivity; blind areas compensation with a distance weighting-based merging approach; combination of three types of data: data with the NN method, data below PR's sensitivity and data within compensated blind areas. During the NN fusion step, the TRMM PR data are taken as targets of the training NNs, and gridded GR data after horizontal downsampling at different heights are used as the input. The trained NNs are then used to obtain 3D high-resolution reflectivity from the original GR gridded data. After 3D fusion of the TRMM PR and GR reflectivity data, a more complete and finer-scale 3D radar reflectivity dataset incorporating characteristics from both the TRMM PR and GR observations can be obtained. The fused reflectivity data are evaluated based on a convective precipitation event through comparison with the high resolution TRMM PR and GR data with an interpolation algorithm.展开更多
Automatic feature extraction and classification algorithm of echo signal of ground penetrating radar is presented. Dyadic wavelet transform and the average energy of the wavelet coefficients are applied in this paper ...Automatic feature extraction and classification algorithm of echo signal of ground penetrating radar is presented. Dyadic wavelet transform and the average energy of the wavelet coefficients are applied in this paper to decompose and extract feature of the echo signal. Then, the extracted feature vector is fed up to a feed forward muhi layer perceptron classifier. Experimental results based on the measured GPR, echo signals obtained from the Mei shan railway are presented.展开更多
The conventional method which assumes the soil distribution is continuous was unsuitable for estimating soil organic carbon density(SOCD) in Karst areas because of its discontinuous soil distribution. The accurate est...The conventional method which assumes the soil distribution is continuous was unsuitable for estimating soil organic carbon density(SOCD) in Karst areas because of its discontinuous soil distribution. The accurate estimation of SOCD in Karst areas is essential for carbon sequestration assessment in China. In this study, a modified method,which considers the vertical proportion of soil area in the profile when calculating the SOCD, was developed to estimate the SOCD in a typical Karst peak-cluster depression area in southwest China. In the modified method, ground-penetrating radar(GPR) technology was used to detect the distribution and thickness of soil. The accuracy of the method was confirmed through comparison with the data obtained using a validation method, in which the soil thickness was measured by excavation. In comparison with the conventional method and average-soil-depth method,the SOCD estimated using the GPR method showed the minimum relative error with respect to that obtained using the validation method. At a regional scale, the average SOCDs at depths of 0-20 cm and 0-100 cm, which were interpolated by ordinary kriging,were 1.49(ranging from 0.03-5.65) and 2.26(0.09-11.60) kgm-2based on GPR method in our study area(covering 393.6 hm2), respectively. Therefore, the modified method can be applied on the accurate estimation of SOCD in discontinuous soil areas such as Karst regions.展开更多
As the amount of data produced by ground penetrating radar (GPR) for roots is large, the transmission and the storage of data consumes great resources. To alleviate this problem, we propose here a root imaging algor...As the amount of data produced by ground penetrating radar (GPR) for roots is large, the transmission and the storage of data consumes great resources. To alleviate this problem, we propose here a root imaging algorithm using chaotic particle swarm optimal (CPSO) compressed sensing based on GPR data according to the sparsity of root space. Radar data are decomposed, observed, measured and represented in sparse manner, so roots image can be reconstructed with limited data. Firstly, radar signal measurement and sparse representation are implemented, and the solution space is established by wavelet basis and Gauss random matrix; secondly, the matching function is considered as the fitness function, and the best fitness value is found by a PSO algorithm; then, a chaotic search was used to obtain the global optimal operator; finally, the root image is reconstructed by the optimal operators. A-scan data, B-scan data, and complex data from American GSSI GPR is used, respectively, in the experimental test. For B-scan data, the computation time was reduced 60 % and PSNR was improved 5.539 dB; for actual root data imaging, the reconstruction PSNR was 26.300 dB, and total computation time was only 67.210 s. The CPSO-OMP algorithm overcomes the problem of local optimum trapping and comprehensively enhances the precision during reconstruction.展开更多
Wheeled mobile robots(WMRs) encounter unavoidable slippage especially on the low adhesion terrain such that the robots stability and accuracy are reduced greatly.To overcome this drawback,this article presents a neura...Wheeled mobile robots(WMRs) encounter unavoidable slippage especially on the low adhesion terrain such that the robots stability and accuracy are reduced greatly.To overcome this drawback,this article presents a neural network(NN) based terminal sliding mode control(TSMC) for WMRs where an augmented ground friction model is reported by which the uncertain friction can be estimated and compensated according to the required performance.In contrast to the existing friction models,the developed augmented ground friction model corresponds to actual fact because not only the effects associated with the mobile platform velocity but also the slippage related to the wheel slip rate are concerned simultaneously.Besides,the presented control approach can combine the merits of both TSMC and radial basis function(RBF) neural networks techniques,thereby providing numerous excellent performances for the closed-loop system,such as finite time convergence and faster friction estimation property.Simulation results validate the proposed friction model and robustness of controller;these research results will improve the autonomy and intelligence of WMRs,particularly when the mobile platform suffers from the sophisticated unstructured environment.展开更多
The ground penetrating radar(GPR) forward simulation all aims at the singular and regular models, such as sandwich model, round cavity, square cavity, and so on, which are comparably simple. But as to the forward of c...The ground penetrating radar(GPR) forward simulation all aims at the singular and regular models, such as sandwich model, round cavity, square cavity, and so on, which are comparably simple. But as to the forward of curl interface underground or “v” figure complex model, it is difficult to realize. So it is important to forward the complex geoelectricity model. This paper takes two Maxwell’s vorticity equations as departure point, makes use of the principles of Yee’s space grid model theory and the basic principle finite difference time domain method, and deduces a GPR forward system of equation of two dimensional spaces. The Mur super absorbed boundary condition is adopted to solve the super strong reflection on the interceptive boundary when there is the forward simulation. And a self-made program is used to process forward simulation to two typical geoelectricity model.展开更多
In order to reduce the accident rate of consumer-grade unmanned aerial vehicles(UAVs)in daily use scenarios,the accident causes are analyzed based on the accident cases of consumer-grade UAVs.By extracting accident ca...In order to reduce the accident rate of consumer-grade unmanned aerial vehicles(UAVs)in daily use scenarios,the accident causes are analyzed based on the accident cases of consumer-grade UAVs.By extracting accident causing factors based on the Grounded theory,the relationship between these factors is analyzed.The Bayesian network for consumer-grade UAV accidents is constructed.With the Grounded theory-Bayesian network,the probability of four types of accidents is inferred:fall,air collision,disappearance,and personal injury.With the posterior probability of each factor being reversely reasoned,the causal chain with the maximum probability of each accident is obtained.After the sensitivity of each factor is analyzed,the key nodes in the network accordingly are inferred.Then the causing factors of consumer-grade UAV accidents are analyzed.The results show that the probability of fall accident is the highest,the fall accident is associated with the probabilistic maximum causal chain of personal injury,and the sensitivity analysis results of each type of accident as the result node are inconsistent.展开更多
The use of vehicle- or air-borne Ground Penetrating Synthetic Aperture Radar (GPSAR) to quickly detect landmines over large areas is becoming a trend. However, producing too many false alarms in GPSAR landmine detecti...The use of vehicle- or air-borne Ground Penetrating Synthetic Aperture Radar (GPSAR) to quickly detect landmines over large areas is becoming a trend. However, producing too many false alarms in GPSAR landmine detection is a major challenge in practical applications of GPSAR. Support Vector Machine (SVM), employing structural risk minimization theory, does not need large amounts of training data, which makes it suitable for solving the landmine detection problem. In this paper, a novel SVM with a hypersphere instead of a hyperplane classification boundary is proposed for landmine detection in GPSAR. The HyperSphere-SVM (HS-SVM) can be trained with both landmine and clutter data, or with landmine data only, which are called the two-class HS-SVM and the one-class HS-SVM, respectively. The HS-SVM has better generalization capability than the traditional HyperPlane-SVM (HP-SVM) with respect to varying operating conditions. Quantitative comparisons have been made using real data collected with the rail-GPSAR landmine detection system, which show that both the two-class and the one-class HS-SVMs have better detection performance than the HP-SVM.展开更多
For more than 20 years,the concept of near-fault pulse-like ground motion has been a topic of great interest due to its distinct characteristics,particularly due to directivity or fling effects,which are hugely influe...For more than 20 years,the concept of near-fault pulse-like ground motion has been a topic of great interest due to its distinct characteristics,particularly due to directivity or fling effects,which are hugely influenced by the rupture mechanism.These unexpected characteristics,along with their effective frequency,energy rate,and damage indices,create a near-fault,pulse-like ground motion capable of causing severe damage to structures.One of the most common approaches for identifying these ground motions is done by conducting wavelet decomposition of the ground motion time history to extract a pulse signal and eventually categorize an earthquake by comparing the original signal to the residual one.However,to overcome the intensive calculations required in this approach,this study proposes using artificial neural networks to identify pulse-like ground motions through classification to predict their pulse period by means of regression analysis.Furthermore,the study is intended to evaluate the reliability and accuracy of various artificial neural networks in identifying pulse-like ground motions and predicting their pulse periods.In general,the results of the study have shown that the artificial neural network can identify pulse-like earthquakes and reliably predict their pulse period.展开更多
The coastal dunes located near the Ashirmata region, south of Mandvi beach lies near the straight coast have been stud-ied by making use of sedimentological information and Ground Penetrating Radar (GPR) data. Sedimen...The coastal dunes located near the Ashirmata region, south of Mandvi beach lies near the straight coast have been stud-ied by making use of sedimentological information and Ground Penetrating Radar (GPR) data. Sedimentological analy-sis reveals the NNW-SSE trending longitudinal dunes consists of well sorted fine sands with unimodal distribution pos-sibly formed by constant wind gust and also the point out to the origin of sediments from single source;mostly the sediments derived from Indus delta transported to beach by long shore drift and tidal waves, carried inland by local on-shore winds. The radargram confirms, the homogenous sand layers with paleosols at shallow depth slip faces are proba-bly formed due to extreme storm activity of Recent.展开更多
According to the frequency property of Phasedarray ground penetrating radar (PGPR), this paper gives a frequency point slice method based on Wigner time-frequency analysis. This method solves the problem of analysis f...According to the frequency property of Phasedarray ground penetrating radar (PGPR), this paper gives a frequency point slice method based on Wigner time-frequency analysis. This method solves the problem of analysis for the PGPR's superposition data and makes detecting outcome simpler and detecting target more recognizable. At last, the analytical results of road test data of the Three Gorges prove the analytical method efficient. Key words phased-array ground penetrating radar - wigner time-frequency analysis - superposition data - object identification CLC number TN 715.7 Foundation item: Supported by the National Nature Science Foundation of China (50099620) and 863 Program Foundation of China (2001AA132050-03)Biography: ZOU Lian (1975-), male, Ph. D candidate, research direction: signal processing.展开更多
文摘This paper presents an efficient algorithm for reducing RLC power/ground network complexities by exploitation of the regularities in the power/ground networks. The new method first builds the equivalent models for many series RLC-current chains based on their Norton's form companion models in the original networks,and then the precondition conjugate gradient based iterative method is used to solve the reduced networks,which are symmetric positive definite. The solutions of the original networks are then back solved from those of the reduced networks.Experimental results show that the complexities of reduced networks are typically significantly smaller than those of the original circuits, which makes the new algorithm extremely fast. For instance, power/ground networks with more than one million branches can be solved in a few minutes on modern Sun workstations.
文摘A CAD tool based on a group of efficient algorithms to verify,design,and optimize power/ground networks for standard cell model is presented.Nonlinear programming techniques,branch and bound algorithms and incomplete Cholesky decomposition conjugate gradient method (ICCG) are the three main parts of our work.Users can choose nonlinear programming method or branch and bound algorithm to satisfy their different requirements of precision and speed.The experimental results prove that the algorithms can run very fast with lower wiring resources consumption.As a result,the CAD tool based on these algorithms is able to cope with large-scale circuits.
基金jointly funded by the Strategic Priority Research Program of the Chinese Academy of Sciences(XDA20020401)the Young Foundation of Institute of Mountain Hazard and Environment(SDS-QN-1702)National Natural Science Foundation of China(Grant No.41571205)
文摘The above-ground net primary production(ANPP) and the precipitation-use efficiency(PUE) regulate the carbon and water cycles in grassland ecosystems, but the relationships among the ANPP, PUE and precipitation are still controversial. We selected 717 grassland sites with ANPP and mean annual precipitation(MAP) data from 40 publications to characterize the relationships ANPP–MAP and PUE–MAP across different grassland types. The MAP and ANPP showed large variations across all grassland types, ranging from 69 to 2335 mm and 4.3 to 1706 g m^(-2), respectively. The global maximum PUE ranged from 0.19 to 1.49 g m^(-2) mm^(-1) with a unimodal pattern. Analysis using the sigmoid function explained the ANPP–MAP relationship best at the global scale. The gradient of the ANPP–MAP graph was small for arid and semi-arid sites(MAP <400 mm). This study improves our understanding of the relationship between ANPP and MAP across dry grassland ecosystems. It provides new perspectives on the prediction and modeling of variations in the ANPP for different grassland types along precipitation gradients.
文摘[Objective] The aim was to study the relevance of grassland temperature and ground net radiation in Guilin.[Method] By dint of ground observation data and net radiation of national benchmark climate station in Guilin from 2007 to 2009,the changes of grassland temperature and ground net radiation were expounded and their relations were pointed out.[Result] The annual changes trends of grassland temperature and ground net radiation in Guilin were basically the same.Monthly average maximum value all appeared in summer(July to August).Monthly average lowest value appeared in winter(December to next January);monthly average grassland temperature and monthly average ground net radiation had positive relation.Grassland temperature and ground net radiation had basically same distribution in four seasons.The average largest value of ground net radiation in summer was the largest and average smallest value was the smallest;the average largest value of ground net radiation in cloudy days was the smallest and average minimum value was the largest;the daily difference was the largest in sunny day and daily difference was the smallest in cloudy day.The daily changes trend of grassland temperature and ground net radiation in different weather state were basically the same;when it was sunny or cloudy,the daily largest value of grassland temperature and ground net radiation occurred between 15:00 and 19:00;when it was overcast,there was no distinct peak and daily changes.The largest value of the daily extreme value of grassland temperature and ground net radiation took place from 12:00 to 15:00.The daily lowest value took place from 20:00 to 07:00 on the next day.[Conclusion] The study provided reference for the analysis of temperature changes in Guilin.
基金supported by the National Natural Science Foundation of China Youth Fund(12105234)。
文摘The distribution of the nuclear ground-state spin in a two-body random ensemble(TBRE)was studied using a general classification neural network(NN)model with two-body interaction matrix elements as input features and the corresponding ground-state spins as labels or output predictions.The quantum many-body system problem exceeds the capability of our optimized NNs in terms of accurately predicting the ground-state spin of each sample within the TBRE.However,our NN model effectively captured the statistical properties of the ground-state spin because it learned the empirical regularity of the ground-state spin distribution in TBRE,as discovered by physicists.
文摘This paper proposes a novel algorithm, which can be used to model and analyzemesh tree hybrid power/ground distribution networks with multiple voltage supply in time domain.Not only this algorithm enhances common method''s ability on analysis of power/ground network withirregular topology, but also very high accuracy it keeps. The accuracy and stability of thisalgorithm is proved using strict math method in this paper. Also, the usage of both preconditiontechnique based on Incomplete Choleskey Decomposition and fast variable elimination technique hasimproved the algorithm''s efficiency a lot. Experimental results show that it can finish the analysisof power/ground network with enormous, size within very short time. Also, this algorithm can beapplied to analyze the clock network, bus network, and signal network without buffer under highworking frequency because of the independence of the topology.
基金Foundation item: Aeronautical Science Foundation of China (04A52005)
文摘The methodology for adaptive control of helicopter ground resonance with magnetorheological (MR) damper is presented. The adaptive inverse control method is used to control the output damping force of MR damper and the range of the damping force is given. Through the adaptive inverse control, the damping force of MR damper is fit to a desired damping force. With the background of applying MR damper to control of helicopter ground resonance, a model of loss force and an adaptive arithmetic for stabilization of the coupled rotor/fuselage system are presented. The simulation shows that the controller presented in this paper can stabilize the rotor/fuselage coupling system quickly and control the helicopter ground resonance effectively.
文摘This study presents an application of artificial neural network(ANN)and Bayesian network(BN)for evaluation of jamming risk of the shielded tunnel boring machines(TBMs)in adverse ground conditions such as squeezing grounds.The analysis is based on database of tunneling cases by numerical modeling to evaluate the ground convergence and possibility of machine entrapment.The results of initial numerical analysis were verified in comparison with some case studies.A dataset was established by performing additional numerical modeling of various scenarios based on variation of the most critical parameters affecting shield jamming.This includes compressive strength and deformation modulus of rock mass,tunnel radius,shield length,shield thickness,in situ stresses,depth of over-excavation,and skin friction between shield and rock.Using the dataset,an ANN was trained to predict the contact pressures from a series of ground properties and machine parameters.Furthermore,the continuous and discretized BNs were used to analyze the risk of shield jamming.The results of these two different BN methods are compared to the field observations and summarized in this paper.The developed risk models can estimate the required thrust force in both cases.The BN models can also be used in the cases with incomplete geological and geomechanical properties.
基金supported in part by National Key Research and Development Program of China(2016YFB0900603)Technology Projects of State Grid Corporation of China(52094017000W).
文摘Definite-time zero-sequence over-current protection is presently used in systems whose neutral point is grounded by a low resistance(low-resistance grounding systems).These systems frequently malfunction owing to their high settings of the action value when a high-impedance grounding fault occurs.In this study,the relationship between the zero-sequence currents of each feeder and the neutral branch was analyzed.Then,a grounding protection method was proposed on the basis of the zero-sequence current ratio coefficient.It is defined as the ratio of the zero-sequence current of the feeder to that of the neutral branch.Nonetheless,both zero-sequence voltage and zero-sequence current are affected by the transition resistance,The influence of transition resistance can be eliminated by calculating this coefficient.Therefore,a method based on the zero-sequence current ratio coefficient was proposed considering the significant difference between the faulty feeder and healthy feeder.Furthermore,unbalanced current can be prevented by setting the starting current.PSCAD simulation results reveal that the proposed method shows high reliability and sensitivity when a high-resistance grounding fault occurs.
基金supported by funding from the Natural Science Foundation of Jiangsu Province (Grant No. BK20171457)the 2013 Special Fund for Meteorological Scientific Research in the Public Interest (Grant No. GYHY201306078)+1 种基金the National Natural Science Foundation of China (Grant No. 41301399)Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD)
文摘The spaceborne precipitation radar onboard the Tropical Rainfall Measuring Mission satellite (TRMM PR) can provide good measurement of the vertical structure of reflectivity, while ground radar (GR) has a relatively high horizontal resolution and greater sensitivity. Fusion of TRMM PR and GR reflectivity data may maximize the advantages from both instruments. In this paper, TRMM PR and GR reflectivity data are fused using a neural network (NN)-based approach. The main steps included are: quality control of TRMM PR and GR reflectivity data; spatiotemporal matchup; GR calibration bias correction; conversion of TRMM PR data from Ku to S band; fusion of TRMM PR and GR reflectivity data with an NN method: interpolation of reflectivity data that are below PR's sensitivity; blind areas compensation with a distance weighting-based merging approach; combination of three types of data: data with the NN method, data below PR's sensitivity and data within compensated blind areas. During the NN fusion step, the TRMM PR data are taken as targets of the training NNs, and gridded GR data after horizontal downsampling at different heights are used as the input. The trained NNs are then used to obtain 3D high-resolution reflectivity from the original GR gridded data. After 3D fusion of the TRMM PR and GR reflectivity data, a more complete and finer-scale 3D radar reflectivity dataset incorporating characteristics from both the TRMM PR and GR observations can be obtained. The fused reflectivity data are evaluated based on a convective precipitation event through comparison with the high resolution TRMM PR and GR data with an interpolation algorithm.
基金Supported by the National Natural Science Founda-tion of China (49984001)
文摘Automatic feature extraction and classification algorithm of echo signal of ground penetrating radar is presented. Dyadic wavelet transform and the average energy of the wavelet coefficients are applied in this paper to decompose and extract feature of the echo signal. Then, the extracted feature vector is fed up to a feed forward muhi layer perceptron classifier. Experimental results based on the measured GPR, echo signals obtained from the Mei shan railway are presented.
基金supported by National Science and Technology Support Project (Grant No. 2012BAD05B03–6)Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDA05070403)National Natural Science Foundationof China (Grant No. 41171246)
文摘The conventional method which assumes the soil distribution is continuous was unsuitable for estimating soil organic carbon density(SOCD) in Karst areas because of its discontinuous soil distribution. The accurate estimation of SOCD in Karst areas is essential for carbon sequestration assessment in China. In this study, a modified method,which considers the vertical proportion of soil area in the profile when calculating the SOCD, was developed to estimate the SOCD in a typical Karst peak-cluster depression area in southwest China. In the modified method, ground-penetrating radar(GPR) technology was used to detect the distribution and thickness of soil. The accuracy of the method was confirmed through comparison with the data obtained using a validation method, in which the soil thickness was measured by excavation. In comparison with the conventional method and average-soil-depth method,the SOCD estimated using the GPR method showed the minimum relative error with respect to that obtained using the validation method. At a regional scale, the average SOCDs at depths of 0-20 cm and 0-100 cm, which were interpolated by ordinary kriging,were 1.49(ranging from 0.03-5.65) and 2.26(0.09-11.60) kgm-2based on GPR method in our study area(covering 393.6 hm2), respectively. Therefore, the modified method can be applied on the accurate estimation of SOCD in discontinuous soil areas such as Karst regions.
基金supported by the Fundamental Research Funds for the Central Universities(DL13BB21)the Natural Science Foundation of Heilongjiang Province(C2015054)+1 种基金Heilongjiang Province Technology Foundation for Selected Osverseas ChineseNatural Science Foundation of Heilongjiang Province(F2015036)
文摘As the amount of data produced by ground penetrating radar (GPR) for roots is large, the transmission and the storage of data consumes great resources. To alleviate this problem, we propose here a root imaging algorithm using chaotic particle swarm optimal (CPSO) compressed sensing based on GPR data according to the sparsity of root space. Radar data are decomposed, observed, measured and represented in sparse manner, so roots image can be reconstructed with limited data. Firstly, radar signal measurement and sparse representation are implemented, and the solution space is established by wavelet basis and Gauss random matrix; secondly, the matching function is considered as the fitness function, and the best fitness value is found by a PSO algorithm; then, a chaotic search was used to obtain the global optimal operator; finally, the root image is reconstructed by the optimal operators. A-scan data, B-scan data, and complex data from American GSSI GPR is used, respectively, in the experimental test. For B-scan data, the computation time was reduced 60 % and PSNR was improved 5.539 dB; for actual root data imaging, the reconstruction PSNR was 26.300 dB, and total computation time was only 67.210 s. The CPSO-OMP algorithm overcomes the problem of local optimum trapping and comprehensively enhances the precision during reconstruction.
基金supported by the National Natural Science Foundation of China(61573078,61573147)the International S&T Cooperation Program of China(2014DFB70120)the State Key Laboratory of Robotics and System(SKLRS2015ZD06)
文摘Wheeled mobile robots(WMRs) encounter unavoidable slippage especially on the low adhesion terrain such that the robots stability and accuracy are reduced greatly.To overcome this drawback,this article presents a neural network(NN) based terminal sliding mode control(TSMC) for WMRs where an augmented ground friction model is reported by which the uncertain friction can be estimated and compensated according to the required performance.In contrast to the existing friction models,the developed augmented ground friction model corresponds to actual fact because not only the effects associated with the mobile platform velocity but also the slippage related to the wheel slip rate are concerned simultaneously.Besides,the presented control approach can combine the merits of both TSMC and radial basis function(RBF) neural networks techniques,thereby providing numerous excellent performances for the closed-loop system,such as finite time convergence and faster friction estimation property.Simulation results validate the proposed friction model and robustness of controller;these research results will improve the autonomy and intelligence of WMRs,particularly when the mobile platform suffers from the sophisticated unstructured environment.
文摘The ground penetrating radar(GPR) forward simulation all aims at the singular and regular models, such as sandwich model, round cavity, square cavity, and so on, which are comparably simple. But as to the forward of curl interface underground or “v” figure complex model, it is difficult to realize. So it is important to forward the complex geoelectricity model. This paper takes two Maxwell’s vorticity equations as departure point, makes use of the principles of Yee’s space grid model theory and the basic principle finite difference time domain method, and deduces a GPR forward system of equation of two dimensional spaces. The Mur super absorbed boundary condition is adopted to solve the super strong reflection on the interceptive boundary when there is the forward simulation. And a self-made program is used to process forward simulation to two typical geoelectricity model.
基金supported by the Fun⁃damental Research Funds for the Central Universities(No.3122022103).
文摘In order to reduce the accident rate of consumer-grade unmanned aerial vehicles(UAVs)in daily use scenarios,the accident causes are analyzed based on the accident cases of consumer-grade UAVs.By extracting accident causing factors based on the Grounded theory,the relationship between these factors is analyzed.The Bayesian network for consumer-grade UAV accidents is constructed.With the Grounded theory-Bayesian network,the probability of four types of accidents is inferred:fall,air collision,disappearance,and personal injury.With the posterior probability of each factor being reversely reasoned,the causal chain with the maximum probability of each accident is obtained.After the sensitivity of each factor is analyzed,the key nodes in the network accordingly are inferred.Then the causing factors of consumer-grade UAV accidents are analyzed.The results show that the probability of fall accident is the highest,the fall accident is associated with the probabilistic maximum causal chain of personal injury,and the sensitivity analysis results of each type of accident as the result node are inconsistent.
文摘The use of vehicle- or air-borne Ground Penetrating Synthetic Aperture Radar (GPSAR) to quickly detect landmines over large areas is becoming a trend. However, producing too many false alarms in GPSAR landmine detection is a major challenge in practical applications of GPSAR. Support Vector Machine (SVM), employing structural risk minimization theory, does not need large amounts of training data, which makes it suitable for solving the landmine detection problem. In this paper, a novel SVM with a hypersphere instead of a hyperplane classification boundary is proposed for landmine detection in GPSAR. The HyperSphere-SVM (HS-SVM) can be trained with both landmine and clutter data, or with landmine data only, which are called the two-class HS-SVM and the one-class HS-SVM, respectively. The HS-SVM has better generalization capability than the traditional HyperPlane-SVM (HP-SVM) with respect to varying operating conditions. Quantitative comparisons have been made using real data collected with the rail-GPSAR landmine detection system, which show that both the two-class and the one-class HS-SVMs have better detection performance than the HP-SVM.
文摘For more than 20 years,the concept of near-fault pulse-like ground motion has been a topic of great interest due to its distinct characteristics,particularly due to directivity or fling effects,which are hugely influenced by the rupture mechanism.These unexpected characteristics,along with their effective frequency,energy rate,and damage indices,create a near-fault,pulse-like ground motion capable of causing severe damage to structures.One of the most common approaches for identifying these ground motions is done by conducting wavelet decomposition of the ground motion time history to extract a pulse signal and eventually categorize an earthquake by comparing the original signal to the residual one.However,to overcome the intensive calculations required in this approach,this study proposes using artificial neural networks to identify pulse-like ground motions through classification to predict their pulse period by means of regression analysis.Furthermore,the study is intended to evaluate the reliability and accuracy of various artificial neural networks in identifying pulse-like ground motions and predicting their pulse periods.In general,the results of the study have shown that the artificial neural network can identify pulse-like earthquakes and reliably predict their pulse period.
文摘The coastal dunes located near the Ashirmata region, south of Mandvi beach lies near the straight coast have been stud-ied by making use of sedimentological information and Ground Penetrating Radar (GPR) data. Sedimentological analy-sis reveals the NNW-SSE trending longitudinal dunes consists of well sorted fine sands with unimodal distribution pos-sibly formed by constant wind gust and also the point out to the origin of sediments from single source;mostly the sediments derived from Indus delta transported to beach by long shore drift and tidal waves, carried inland by local on-shore winds. The radargram confirms, the homogenous sand layers with paleosols at shallow depth slip faces are proba-bly formed due to extreme storm activity of Recent.
文摘According to the frequency property of Phasedarray ground penetrating radar (PGPR), this paper gives a frequency point slice method based on Wigner time-frequency analysis. This method solves the problem of analysis for the PGPR's superposition data and makes detecting outcome simpler and detecting target more recognizable. At last, the analytical results of road test data of the Three Gorges prove the analytical method efficient. Key words phased-array ground penetrating radar - wigner time-frequency analysis - superposition data - object identification CLC number TN 715.7 Foundation item: Supported by the National Nature Science Foundation of China (50099620) and 863 Program Foundation of China (2001AA132050-03)Biography: ZOU Lian (1975-), male, Ph. D candidate, research direction: signal processing.