Two 500 m deep investigation shafts were excavating in the granite body in Mizunami, central Japan by JAEA (Japan Nuclear Cycle Development Institute) in 2004-2012. Groundwater with volume of 700 m3 was generally pump...Two 500 m deep investigation shafts were excavating in the granite body in Mizunami, central Japan by JAEA (Japan Nuclear Cycle Development Institute) in 2004-2012. Groundwater with volume of 700 m3 was generally pumping a day to prevent the shafts from submerging in 2012 following the excavating. As a result of pumping the groundwater, the ground water level lowered to 60 m in the borehole with the distance of 200 m from the excavating shafts in 2012. Leveling network extending 2 km × 2 km around the shafts was established to detect the vertical deformation around the shafts in 2004, and precise leveling was done every year. An 18 mm ground subsidence was detected in the benchmark close to the shafts for 8 years in 2004-2012, and time series of subsidence at benchmark was consistent with the groundwater drawdown. The groundwater drawdown and ground subsidence were caused by the pumping ground water in excavating shafts.展开更多
Artificial freezing of water-bearing soil layers composing a sedimentary deposit can induce frost heave and water migration that affect the natural stress-strain state of the soil layers and freezing process.In the pr...Artificial freezing of water-bearing soil layers composing a sedimentary deposit can induce frost heave and water migration that affect the natural stress-strain state of the soil layers and freezing process.In the present paper,a thermo-hydro-mechanical(THM)model for freezing of water-saturated soil is proposed to study the effects of frost heave and water migration in frozen soils on the formation of a frozen wall and subsequent excavation activity for sinking a vertical shaft.The governing equations of the model are formulated relative to porosity,temperature,and displacement which are considered as primary variables.The relationship between temperature,pore water,and ice pressure in frozen soil is established by the Clausius-Clapeyron equation,whereas the interaction between the stress-strain behavior and changes in porosity and pore pressure is described with the poromechanics theory.Moreover,constitutive relations for additional mechanical deformation are incorporated to describe volumetric expansion of soil during freezing as well as creep strain of soil in the frozen state.The ability of the proposed model to capture the frost heave of frozen soil is demonstrated by a comparison between numerical results and experimental data given by a one-sided freezing test.Also to validate the model in other freezing conditions,a radial freezing experiment is performed.After the validation procedure,the model is applied to numerical simulation of artificial freezing of silt and sand layers for shaft sinking at Petrikov potash mine in Belarus.Comparison of calculated temperature with thermal monitoring data during active freezing stage is presented.Numerical analysis of deformation of unsupported sidewall of a shaft inside the frozen wall is conducted to account for the change in natural stress-strain state of soil layers induced by artificial freezing.展开更多
In civil and mining operations that involve ground excavation and support, the loads are distributed between the ground and support depending on their relative stiffness. This paper presents the development of concept...In civil and mining operations that involve ground excavation and support, the loads are distributed between the ground and support depending on their relative stiffness. This paper presents the development of conceptual single-degree-of-freedom models, which are used to derive equations for estimating displacements and stresses for ground-support interaction problems encountered in pillars in room-andpillar mining(natural support system), and liners for circular vertical shafts(artificial support systems).For pillar assessment, mine-pillar interaction curves can be constructed using a double spring analogy.Additionally, the effectiveness of different support systems can be evaluated depending on their effect upon the mine-pillar system. For shaft design, an initial estimation of the required lining strength and thickness can be readily made based on a double ring analogue. For both problems, the results from the proposed approach compare well with those obtained by finite element numerical simulations.展开更多
The paper describes mechacal properties and deformation features of shaft adjoining rocks in gliding tectonic ground and presents the shaft-supporting procedure of smooth-wall cushion blasting,preliminary bolting and ...The paper describes mechacal properties and deformation features of shaft adjoining rocks in gliding tectonic ground and presents the shaft-supporting procedure of smooth-wall cushion blasting,preliminary bolting and shotcreting and pouring reioforced coocrete liner in one-time-whole-section on the basis of adjoining rock deformations measured dynamically site. Field measurements of the pressur exerted on shaft wall show that this supponing procedare has enough safety reserve to meet the safety requirements in mining production.展开更多
This paper gives a brief review of the development of shaft sinking by artificial ground freezing since 1949 when new China was founded. Several shaft freezing schemes which have been successfully applied from the eco...This paper gives a brief review of the development of shaft sinking by artificial ground freezing since 1949 when new China was founded. Several shaft freezing schemes which have been successfully applied from the economic and safe viewpoints are presented. Current technology and some innovative techniques, especially the shaft lining which have experienced major improvements over the last four decades ,are briefly reviewed. The technique of the in-situ pour concrete incorporating ailica fume with higher early strength under low temperature curing conditions is described. The temperature field in shaft freezing and its finite difference solution are given in this paper. A recently developed method combining freeze wall model test with back analysis technique based on numerical simulation is also described.展开更多
文摘Two 500 m deep investigation shafts were excavating in the granite body in Mizunami, central Japan by JAEA (Japan Nuclear Cycle Development Institute) in 2004-2012. Groundwater with volume of 700 m3 was generally pumping a day to prevent the shafts from submerging in 2012 following the excavating. As a result of pumping the groundwater, the ground water level lowered to 60 m in the borehole with the distance of 200 m from the excavating shafts in 2012. Leveling network extending 2 km × 2 km around the shafts was established to detect the vertical deformation around the shafts in 2004, and precise leveling was done every year. An 18 mm ground subsidence was detected in the benchmark close to the shafts for 8 years in 2004-2012, and time series of subsidence at benchmark was consistent with the groundwater drawdown. The groundwater drawdown and ground subsidence were caused by the pumping ground water in excavating shafts.
基金supported by 17-11-01204 project(Russian Science Foundation)。
文摘Artificial freezing of water-bearing soil layers composing a sedimentary deposit can induce frost heave and water migration that affect the natural stress-strain state of the soil layers and freezing process.In the present paper,a thermo-hydro-mechanical(THM)model for freezing of water-saturated soil is proposed to study the effects of frost heave and water migration in frozen soils on the formation of a frozen wall and subsequent excavation activity for sinking a vertical shaft.The governing equations of the model are formulated relative to porosity,temperature,and displacement which are considered as primary variables.The relationship between temperature,pore water,and ice pressure in frozen soil is established by the Clausius-Clapeyron equation,whereas the interaction between the stress-strain behavior and changes in porosity and pore pressure is described with the poromechanics theory.Moreover,constitutive relations for additional mechanical deformation are incorporated to describe volumetric expansion of soil during freezing as well as creep strain of soil in the frozen state.The ability of the proposed model to capture the frost heave of frozen soil is demonstrated by a comparison between numerical results and experimental data given by a one-sided freezing test.Also to validate the model in other freezing conditions,a radial freezing experiment is performed.After the validation procedure,the model is applied to numerical simulation of artificial freezing of silt and sand layers for shaft sinking at Petrikov potash mine in Belarus.Comparison of calculated temperature with thermal monitoring data during active freezing stage is presented.Numerical analysis of deformation of unsupported sidewall of a shaft inside the frozen wall is conducted to account for the change in natural stress-strain state of soil layers induced by artificial freezing.
文摘In civil and mining operations that involve ground excavation and support, the loads are distributed between the ground and support depending on their relative stiffness. This paper presents the development of conceptual single-degree-of-freedom models, which are used to derive equations for estimating displacements and stresses for ground-support interaction problems encountered in pillars in room-andpillar mining(natural support system), and liners for circular vertical shafts(artificial support systems).For pillar assessment, mine-pillar interaction curves can be constructed using a double spring analogy.Additionally, the effectiveness of different support systems can be evaluated depending on their effect upon the mine-pillar system. For shaft design, an initial estimation of the required lining strength and thickness can be readily made based on a double ring analogue. For both problems, the results from the proposed approach compare well with those obtained by finite element numerical simulations.
文摘The paper describes mechacal properties and deformation features of shaft adjoining rocks in gliding tectonic ground and presents the shaft-supporting procedure of smooth-wall cushion blasting,preliminary bolting and shotcreting and pouring reioforced coocrete liner in one-time-whole-section on the basis of adjoining rock deformations measured dynamically site. Field measurements of the pressur exerted on shaft wall show that this supponing procedare has enough safety reserve to meet the safety requirements in mining production.
文摘This paper gives a brief review of the development of shaft sinking by artificial ground freezing since 1949 when new China was founded. Several shaft freezing schemes which have been successfully applied from the economic and safe viewpoints are presented. Current technology and some innovative techniques, especially the shaft lining which have experienced major improvements over the last four decades ,are briefly reviewed. The technique of the in-situ pour concrete incorporating ailica fume with higher early strength under low temperature curing conditions is described. The temperature field in shaft freezing and its finite difference solution are given in this paper. A recently developed method combining freeze wall model test with back analysis technique based on numerical simulation is also described.