In this study, an unscented particle filtering method based on an interacting multiple model (IMM) frame for a Markovian switching system is presented. The method integrates the multiple model (MM) filter with an unsc...In this study, an unscented particle filtering method based on an interacting multiple model (IMM) frame for a Markovian switching system is presented. The method integrates the multiple model (MM) filter with an unscented particle filter (UPF) by an interaction step at the beginning. The framework (interaction/mixing, filtering, and combination) is similar to that in a standard IMM filter, but an UPF is adopted in each model. Therefore, the filtering performance and degeneracy phenomenon of particles are improved. The filtering method addresses nonlinear and/or non-Gaussian tracking problems. Simulation results show that the method has better tracking performance compared with the standard IMM-type filter and IMM particle filter.展开更多
A new algorithm is developed to achieve accurate state estimation in ground moving target tracking by means of using road information. It is an adaptive variable structure interacting multiple model estimator with dyn...A new algorithm is developed to achieve accurate state estimation in ground moving target tracking by means of using road information. It is an adaptive variable structure interacting multiple model estimator with dynamic models modification (DMM VS-IMM for short). Firstly, road information is employed to modify the target dynamic models used by filter, including modification of state transition matrix and process noise. Secondly, road information is applied to update the model set of a VS-IMM estimator. Predicted state estimation and road information are used to locate the target in the road network on which the model set is updated and finally IMM filtering is implemented. As compared with traditional methods, the accuracy of state estimation is improved for target moving not only on a single road, but also through an intersection. Monte Carlo simulation demonstrates the efficiency and robustness of the proposed algorithm with moderate computational loads.展开更多
Satellites with altitudes below 400 km are called super low altitude satellites(SLAS),often used to achieve responsive imaging tasks.Therefore,it is important for the manipulation of its ground track.Aiming at the pro...Satellites with altitudes below 400 km are called super low altitude satellites(SLAS),often used to achieve responsive imaging tasks.Therefore,it is important for the manipulation of its ground track.Aiming at the problem of ground track manipulation of SLAS,a control method based on tangential impulse thrust is proposed.First,the equation of the longitude difference between SLAS and the target point on the target latitude is derived based on Gauss’s variational equations.On this basis,the influence of the tangential impulse thrust on the ground track’s longitude is derived.Finally,the method for ground track manipulation of SLAS under the tangential impulse thrust is proposed.The simulation results verify the effective-ness of the method,after manipulation,the satellite can visit the target point and revisit it for multiple days.展开更多
In order to track ground moving target, a variable structure interacting multiple model (VS-IMM) using mean shift unscented particle filter (MS-UPF) is proposed in this paper. In model-conditioned filtering, sampl...In order to track ground moving target, a variable structure interacting multiple model (VS-IMM) using mean shift unscented particle filter (MS-UPF) is proposed in this paper. In model-conditioned filtering, sample particles obtained from the unscented particle filter are moved towards the maximal posterior density estimation of the target state through mean shift. On the basis of stop model in VS-IMM, hide model is proposed. Once the target is obscured by terrain, the prediction at prior time is used instead of the measurement at posterior time; in addition, the road model set used is not changed. A ground moving target indication (GMTI) radar is employed in three common simulation scenarios of ground target: entering or leaving a road, crossing a junction and no measurement. Two evaluation indexes, root mean square error (RMSE) and average normalized estimation error squared (ANEES), are used. The results indicate that when the road on which the target moving changes, the tracking accuracy is effectively improved in the proposed algorithm. Moreover, track interruption could be avoided if the target is moving too slowly or masked by terrain.展开更多
Seasonally cold climate and resulting frost action set great demands to railway track substructure in order to maintain Irack geomelry. Chal- lenges culminate on high-speed lines, where the tolerances for roughness ar...Seasonally cold climate and resulting frost action set great demands to railway track substructure in order to maintain Irack geomelry. Chal- lenges culminate on high-speed lines, where the tolerances for roughness are the tightest. Problems may result in highly increased Irack maintenance and need for temporary speed reslrictions. The causes of frost action can be associated with subsoil, subballast or ballast. The major concern in frost protection is to avoid the freezing of frost susceptible subsoil by using sufficient thickness of subballast and relying on non-fi'ost-susctible subballast material. This paper provides an overview of the main research findings on the role of ballast, subballast and subsoil in frost acedon. In new comlruclion the material specificalions, design procedures and construction methods have been developed to ensure adequate performance of Irack subscatt, but special challenges exist in managing existing Wacks that were not designed for modem requirements. In order to perform cost-effective and sustainable track maintenance, it is necessary to recognize the problem areas and define the root-causes of problems. For locating the problem sections and defining the causes of defects, a sophisticated analysis based on integration of track geometry and ground penetrating radar (GPR) data has been developed and is summarized in this paper,展开更多
This paper presents an analytical model for calculating the Earth discontinuous coverage of satellite constellation with repeating ground tracks by integrating and extending the application of coverage region and rout...This paper presents an analytical model for calculating the Earth discontinuous coverage of satellite constellation with repeating ground tracks by integrating and extending the application of coverage region and route theory.Specifically,the visibility condition for a ground point is represented as a coverage region in the two-dimension map of visibility properties,and the trajectories of satellites with circular orbits and repeating ground tracks are converted to several inclined lines in the map.By analyzing the intersections of the lines and the edge of the coverage region,the coverage durations for the ground point can be calculated.Based on the point coverage,the variations of coverage characteristics along the parallel are analyzed,and the regional or global coverage characteristics of constellations can be obtained.Numerical examples show that the proposed method can accurately and rapidly calculate the coverage characteristics,e.g.revisit time and coverage time.The calculated results are extremely close to those of the Satellite Tool Kit(STK)and are also superior to the existing research results.The proposed analytical model can be a useful tool for constellation design and coverage performance analysis.展开更多
This paper is based on the second problem of the 8th China Space Trajectory Design Competition(CTOC8).The background is LEO constellation design strategy for monitoring discrete multi-targets with small stellite under...This paper is based on the second problem of the 8th China Space Trajectory Design Competition(CTOC8).The background is LEO constellation design strategy for monitoring discrete multi-targets with small stellite under J model.The difculty is that the small satellite is equipped with low-cost cameras with limited coverage ability and the targets are distributed separately in a key area,which result in long revisit time or large pumber of satelites based on traditional design method.In this paper,a speciflc LEO consellation design method is proposed to cope with the problems.First,grid search and numerical method are performed to construct a database consisting of repeating ground track orbits.Then several orbits are carefully selected by pruning method to visit each target.Finally,repeating ground track costellation is constructed to meet the maximun revisit time constraint.The present method provides a systematic constellation design methodology of remote sensing observation with limited coverage ability,and demonstrates the resulting constellation can obtain rapid revisit frequency over discrete multi-targets with the least number of satellites.展开更多
基金Project supported by the National Natural Science Foundation ofChina (No. 60673024)the National Basic Research Program(973) of China (No. 2004CB719400)
文摘In this study, an unscented particle filtering method based on an interacting multiple model (IMM) frame for a Markovian switching system is presented. The method integrates the multiple model (MM) filter with an unscented particle filter (UPF) by an interaction step at the beginning. The framework (interaction/mixing, filtering, and combination) is similar to that in a standard IMM filter, but an UPF is adopted in each model. Therefore, the filtering performance and degeneracy phenomenon of particles are improved. The filtering method addresses nonlinear and/or non-Gaussian tracking problems. Simulation results show that the method has better tracking performance compared with the standard IMM-type filter and IMM particle filter.
基金Foundation item: National Natural Science Foundation of China (60502019)
文摘A new algorithm is developed to achieve accurate state estimation in ground moving target tracking by means of using road information. It is an adaptive variable structure interacting multiple model estimator with dynamic models modification (DMM VS-IMM for short). Firstly, road information is employed to modify the target dynamic models used by filter, including modification of state transition matrix and process noise. Secondly, road information is applied to update the model set of a VS-IMM estimator. Predicted state estimation and road information are used to locate the target in the road network on which the model set is updated and finally IMM filtering is implemented. As compared with traditional methods, the accuracy of state estimation is improved for target moving not only on a single road, but also through an intersection. Monte Carlo simulation demonstrates the efficiency and robustness of the proposed algorithm with moderate computational loads.
基金supported by the National Natural Science Foundation of China(11972130)the Heilongjiang Touyan Team Program(11972130).
文摘Satellites with altitudes below 400 km are called super low altitude satellites(SLAS),often used to achieve responsive imaging tasks.Therefore,it is important for the manipulation of its ground track.Aiming at the problem of ground track manipulation of SLAS,a control method based on tangential impulse thrust is proposed.First,the equation of the longitude difference between SLAS and the target point on the target latitude is derived based on Gauss’s variational equations.On this basis,the influence of the tangential impulse thrust on the ground track’s longitude is derived.Finally,the method for ground track manipulation of SLAS under the tangential impulse thrust is proposed.The simulation results verify the effective-ness of the method,after manipulation,the satellite can visit the target point and revisit it for multiple days.
文摘In order to track ground moving target, a variable structure interacting multiple model (VS-IMM) using mean shift unscented particle filter (MS-UPF) is proposed in this paper. In model-conditioned filtering, sample particles obtained from the unscented particle filter are moved towards the maximal posterior density estimation of the target state through mean shift. On the basis of stop model in VS-IMM, hide model is proposed. Once the target is obscured by terrain, the prediction at prior time is used instead of the measurement at posterior time; in addition, the road model set used is not changed. A ground moving target indication (GMTI) radar is employed in three common simulation scenarios of ground target: entering or leaving a road, crossing a junction and no measurement. Two evaluation indexes, root mean square error (RMSE) and average normalized estimation error squared (ANEES), are used. The results indicate that when the road on which the target moving changes, the tracking accuracy is effectively improved in the proposed algorithm. Moreover, track interruption could be avoided if the target is moving too slowly or masked by terrain.
基金Finnish Transport Agency for enabling the research
文摘Seasonally cold climate and resulting frost action set great demands to railway track substructure in order to maintain Irack geomelry. Chal- lenges culminate on high-speed lines, where the tolerances for roughness are the tightest. Problems may result in highly increased Irack maintenance and need for temporary speed reslrictions. The causes of frost action can be associated with subsoil, subballast or ballast. The major concern in frost protection is to avoid the freezing of frost susceptible subsoil by using sufficient thickness of subballast and relying on non-fi'ost-susctible subballast material. This paper provides an overview of the main research findings on the role of ballast, subballast and subsoil in frost acedon. In new comlruclion the material specificalions, design procedures and construction methods have been developed to ensure adequate performance of Irack subscatt, but special challenges exist in managing existing Wacks that were not designed for modem requirements. In order to perform cost-effective and sustainable track maintenance, it is necessary to recognize the problem areas and define the root-causes of problems. For locating the problem sections and defining the causes of defects, a sophisticated analysis based on integration of track geometry and ground penetrating radar (GPR) data has been developed and is summarized in this paper,
基金the National Natural Science Foundation of China (No. 12072365)the Hunan Provincial Natural Science Foundation of China (No. 2020JJ4657)
文摘This paper presents an analytical model for calculating the Earth discontinuous coverage of satellite constellation with repeating ground tracks by integrating and extending the application of coverage region and route theory.Specifically,the visibility condition for a ground point is represented as a coverage region in the two-dimension map of visibility properties,and the trajectories of satellites with circular orbits and repeating ground tracks are converted to several inclined lines in the map.By analyzing the intersections of the lines and the edge of the coverage region,the coverage durations for the ground point can be calculated.Based on the point coverage,the variations of coverage characteristics along the parallel are analyzed,and the regional or global coverage characteristics of constellations can be obtained.Numerical examples show that the proposed method can accurately and rapidly calculate the coverage characteristics,e.g.revisit time and coverage time.The calculated results are extremely close to those of the Satellite Tool Kit(STK)and are also superior to the existing research results.The proposed analytical model can be a useful tool for constellation design and coverage performance analysis.
基金This work was supported by the National Natural Science Foundation of China(Grant No.91438206).
文摘This paper is based on the second problem of the 8th China Space Trajectory Design Competition(CTOC8).The background is LEO constellation design strategy for monitoring discrete multi-targets with small stellite under J model.The difculty is that the small satellite is equipped with low-cost cameras with limited coverage ability and the targets are distributed separately in a key area,which result in long revisit time or large pumber of satelites based on traditional design method.In this paper,a speciflc LEO consellation design method is proposed to cope with the problems.First,grid search and numerical method are performed to construct a database consisting of repeating ground track orbits.Then several orbits are carefully selected by pruning method to visit each target.Finally,repeating ground track costellation is constructed to meet the maximun revisit time constraint.The present method provides a systematic constellation design methodology of remote sensing observation with limited coverage ability,and demonstrates the resulting constellation can obtain rapid revisit frequency over discrete multi-targets with the least number of satellites.