The influence of the longitudinal acceleration and the angular acceleration of detecting target based on vortex electromagnetic waves in keyhole space are analyzed.The spectrum spreads of different orbital angular mom...The influence of the longitudinal acceleration and the angular acceleration of detecting target based on vortex electromagnetic waves in keyhole space are analyzed.The spectrum spreads of different orbital angular momentum(OAM)modes in different non-line-of-sight situations are simulated.The errors of target accelerations in detection are calculated and compared based on the OAM spectra spreading by using two combinations of composite OAM modes in the keyhole space.According to the research,the effects about spectrum spreads of higher OAM modes are more obvious.The error in detection is mainly affected by OAM spectrum spreading,which can be reduced by reasonably using different combinations of OAM modes in different practical situations.The above results provide a reference idea for investigating keyhole effect when vortex electromagnetic wave is used to detect accelerations.展开更多
Multifunctional,flexible,and robust thin films capable of operating in demanding harsh temperature environments are crucial for various cutting-edge applications.This study presents a multifunctional Janus film integr...Multifunctional,flexible,and robust thin films capable of operating in demanding harsh temperature environments are crucial for various cutting-edge applications.This study presents a multifunctional Janus film integrating highly-crystalline Ti_(3)C_(2)T_(x) MXene and mechanically-robust carbon nanotube(CNT)film through strong hydrogen bonding.The hybrid film not only exhibits high electrical conductivity(4250 S cm^(-1)),but also demonstrates robust mechanical strength and durability in both extremely low and high temperature environments,showing exceptional resistance to thermal shock.This hybrid Janus film of 15μm thickness reveals remarkable multifunctionality,including efficient electromagnetic shielding effectiveness of 72 dB in X band frequency range,excellent infrared(IR)shielding capability with an average emissivity of 0.09(a minimal value of 0.02),superior thermal camouflage performance over a wide temperature range(−1 to 300℃)achieving a notable reduction in the radiated temperature by 243℃ against a background temperature of 300℃,and outstanding IR detection capability characterized by a 44%increase in resistance when exposed to 250 W IR radiation.This multifunctional MXene/CNT Janus film offers a feasible solution for electromagnetic shielding and IR shielding/detection under challenging conditions.展开更多
The dual transmitter implements the equivalent anti-magnetic flux transient electromagnetic method, which can effectively reduce the scope of the transient electromagnetic detection blind area. However, this method is...The dual transmitter implements the equivalent anti-magnetic flux transient electromagnetic method, which can effectively reduce the scope of the transient electromagnetic detection blind area. However, this method is rarely reported in the detection of pipelines in urban geophysical exploration and the application of coal mines. Based on this, this paper realizes the equivalent anti-magnetic flux transient electromagnetic method based on the dual launcher. The suppression effect of this method on the blind area is analyzed by physical simulation. And the detection experiment of underground pipelines is carried out outdoors. The results show that the dual launcher can significantly reduce the turn-off time, thereby effectively reducing the impact of the blind area on the detection results, and the pipeline detection results verify the device’s effectiveness. Finally, based on the ground experimental results, the application prospect of mine advanced detection is discussed. Compared with other detection fields, the formation of blind areas is mainly caused by the equipment. If the dual launcher can be used to reduce the blind area, the accuracy of advanced detection can be improved more effectively. The above research results are of great significance for improving the detection accuracy of the underground transient electromagnetic method.展开更多
In recent years,karst construction projects in the built-up area of Wuhan(capital of Hubei Province,China)are increasing,and the karst geological disasters have aroused social concerns.The actual engineering projects ...In recent years,karst construction projects in the built-up area of Wuhan(capital of Hubei Province,China)are increasing,and the karst geological disasters have aroused social concerns.The actual engineering projects usually use shallow geophysical exploration methods to explore karst.This paper uses Spatial Auto-Correlation Method(SPAC)and electromagnetic Computerized Tomography(CT)to detect karst in urban built-up areas.Depending on the different physical properties of rock and soil,the SPAC method can better reveal the interface between soil and rock strata and the interface between soil layers.The electromagnetic CT method can identify strata according to the apparent absorption coefficient,which can better reveal the interface between soil and rock,the interface between the more intact and weathered rock.The SPAC method is mainly qualitative to measure the low-speed area,namely,the wrong geological body i.e.,karst cave,but also can detect the fracture zone or filling mode of karst cave,and at the same time,cannot use exploration holes or logging observation.The electromagnetic CT method can accurately detect the location and scale of the karst caves and has a higher accuracy detecting karst bands.In addition,exploration holes or well logging observations are also expected to be conducted,and their detection effect is greatly affected by lithology.展开更多
The anomaly detection of electromagnetic environment situation(EMES) has essential reference value for electromagnetic equipment behavior cognition and battlefield threat assessment.In this paper,we proposed a deep le...The anomaly detection of electromagnetic environment situation(EMES) has essential reference value for electromagnetic equipment behavior cognition and battlefield threat assessment.In this paper,we proposed a deep learning-based method for detecting anomalies in EMES to address the problem of relatively low efficiency of electromagnetic environment situation anomaly detection(EMES-AD).Firstly,the convolutional kernel extracts the static features of different regions of the EMES.Secondly,the dynamic features of the region are obtained by using a recurrent neural network(LSTM).Thirdly,the Spatio-temporal features of the region are recovered by using a de-convolutional network and then fused to predict the EMES.The structural similarity algorithm(SSIM) is used to determine whether it is anomalous.We developed the detection framework,de-signed the network parameters,simulated the data sets containing different anomalous types of EMES,and carried out the detection experiments.The experimental results show that the proposed method is effective.展开更多
Tunneling machines, or excavators, are large and good conductors and affect the reliability of data gathering and interpretation in advanced detection using transient electromagnetic methods. In our experiment, we use...Tunneling machines, or excavators, are large and good conductors and affect the reliability of data gathering and interpretation in advanced detection using transient electromagnetic methods. In our experiment, we used a coincident-loop and central loop type of configuration, where the coil plane l) vertical to and 2) parallel to the working face. A SIROTEM instrument at different locations was used to observe the transient electromagnetic responses of the excavator and to analyze the response amplitudes. The result shows that the tunneling machine affects the advanced detection data and is related to the way the coil is coupled. When the excavator is 6 m from the observatory, the interference of tunneling machine can be ignored.展开更多
Airborne electromagnetic transient method enjoys the advantages of high-efficiency and the high resolution of electromagnetic anomalies,especially suitable for mining detection around goaf areas and deep exploration o...Airborne electromagnetic transient method enjoys the advantages of high-efficiency and the high resolution of electromagnetic anomalies,especially suitable for mining detection around goaf areas and deep exploration of minerals.In this paper,we calculated the full-wave airborne transient electromagnetic data,according to the result of numerical research,the advantage of switch-off time response in electromagnetic detection was proofed via experiments.Firstly,based on the full-wave airborne transient electromagnetic system developed by Jilin University(JLU-ATEMI),we proposed a method to compute the full-waveform electromagnetic(EM)data of 3D model using the FDTD approach and convolution algorithm,and verify the calculation by the response of homogenous half-space.Then,through comparison of switch-off-time response and off-time response,we studied the effect of ramp time on anomaly detection.Finally,we arranged two experimental electromagnetic detection,the results indicated that the switch-off-time response can reveal the shallow target more effectively,and the full-waveform airborne electromagnetic system is an effective technique for shallow target detection.展开更多
Hardware Trojan(HT) refers to a special module intentionally implanted into a chip or an electronic system. The module can be exploited by the attacker to achieve destructive functions. Unfortunately the HT is difficu...Hardware Trojan(HT) refers to a special module intentionally implanted into a chip or an electronic system. The module can be exploited by the attacker to achieve destructive functions. Unfortunately the HT is difficult to detecte due to its minimal resource occupation. In order to achieve an accurate detection with high efficiency, a HT detection method based on the electromagnetic leakage of the chip is proposed in this paper. At first, the dimensionality reduction and the feature extraction of the electromagnetic leakage signals in each group(template chip, Trojan-free chip and target chip) were realized by principal component analysis(PCA). Then, the Mahalanobis distances between the template group and the other groups were calculated. Finally, the differences between the Mahalanobis distances and the threshold were compared to determine whether the HT had been implanted into the target chip. In addition, the concept of the HT Detection Quality(HTDQ) was proposed to analyze and compare the performance of different detection methods. Our experiment results indicate that the accuracy of this detection method is 91.93%, and the time consumption is 0.042s in average, which shows a high HTDQ compared with three other methods.展开更多
The electromagnetic detection satellite (EDS) is a type of earth observation satellites (EOSs). The Information collected by EDSs plays an important role in some fields, such as industry, science and military. The...The electromagnetic detection satellite (EDS) is a type of earth observation satellites (EOSs). The Information collected by EDSs plays an important role in some fields, such as industry, science and military. The scheduling of EDSs is a complex combinatorial optimization problem. Current research mainly focuses on the scheduling of imaging satellites and SAR satellites, but little work has been done on the scheduling of EDSs for its specific characteristics. A multi-satellite scheduling model is established, in which the specific constrains of EDSs are considered, then a scheduling algorithm based on the genetic algorithm (GA) is proposed. To deal with the specific constrains of EDSs, a penalty function method is introduced. However, it is hard to determine the appropriate penalty coefficient in the penalty function. Therefore, an adaptive adjustment mechanism of the penalty coefficient is designed to solve the problem, as well as improve the scheduling results. Experimental results are used to demonstrate the correctness and practicability of the proposed scheduling algorithm.展开更多
During advanced water detection using the transient electromagnetic method, the exploration effect for water-rich area is often poor due to the interference of bolts that are distributed in different positions in work...During advanced water detection using the transient electromagnetic method, the exploration effect for water-rich area is often poor due to the interference of bolts that are distributed in different positions in working face. Thus, the study on the interference characteristics of bolts in different states has important directive significance for improving the acquisition quality and data processing method in water detection. Based on the analysis of the distribution laws of magnetic field excited by small multi-turn coincident loop in full space of homogeneity, the test on the interference of bolts has been designed in the mine. Through drilling 18 holes around the overlapping coil in the working face, mass data are collected in order with the posi- tion change and the exposed bolt length. The results of comprehensive data analysis show that the transient electromagnetic field is strongly interfered as the distance between the bolt and the center of the coil is less than 3 m, and the interference varies greatly as the distance varies. On the other hand, the field induced by the bolts can be ignored as the distance exceeds 3 m. The findings can help to improve data acquisition and correction during advanced water detection when using the transient electromagnetic method.展开更多
Aiming at the major failure mode of prestressed concrete cylinder pipes (PCCP),namely the fracture of prestressed steel wires,the broken wire detection technology based on orthogonal electromagnetic principle is studi...Aiming at the major failure mode of prestressed concrete cylinder pipes (PCCP),namely the fracture of prestressed steel wires,the broken wire detection technology based on orthogonal electromagnetic principle is studied. The detection system model is established and optimized by using COMSOL finite element simulation software. Furthermore,the theoretical analysis of the wire-breaking effect is carried out. The influence of factors on broken wire signal characteristics such as edge effect,circumferential relative position of the detector and broken wires,excitation frequency and relative permeability of steel wires is analyzed,which provides a theoretical guidance for the field detection. The influence of the steel cylinder structure on the simulation results is analyzed,which provides a reference for the improvement of calculation efficiency. The corresponding detection system is designed and implemented. Concretely,a high-voltage and high-power sinusoidal signal coil drive scheme based on sinusoidal pulse width modulation technology and an intelligent power module is innovatively proposed and the corresponding protection circuit is designed. The broken wire signal could be effectively extracted through a lock-in amplifier. The experimental results show that this system can effectively identify the broken wires with low cost.展开更多
A novel electromagnetic tomography(EMT)system for defect detection of high-speed rail wheel is proposed,which differs from traditional electromagnetic tomography systems in its spatial arrangements of coils.A U-shaped...A novel electromagnetic tomography(EMT)system for defect detection of high-speed rail wheel is proposed,which differs from traditional electromagnetic tomography systems in its spatial arrangements of coils.A U-shaped sensor array was designed,and then a simulation model was built with the low frequency electromagnetic simulation software.Three different algorithms were applied to perform image reconstruction,therefore the defects can be detected from the reconstructed images.Based on the simulation results,an experimental system was built and image reconstruction were performed with the measured data.The reconstructed images obtained both from numerical simulation and experimental system indicated the locations of the defects of the wheel,which verified the feasibility of the EMT system and revealed its good application prospect in the future.展开更多
In this paper,transient electromagnetic method was used to carry out the feasibility study on the detection and recognition of chamber blasting misfire.Firstly,an electromagnetic background field was established in th...In this paper,transient electromagnetic method was used to carry out the feasibility study on the detection and recognition of chamber blasting misfire.Firstly,an electromagnetic background field was established in the test;secondly,a benign conductor was preset in the chamber,and then the background field was eliminated after the electromagnetic field was measured;thirdly,the transient electromagnetic field was measured again after blasting;at last,the chamber blasting misfire was detected and recognized by comparing the change of eddy current field of the preset benign conductor before and after blasting.The test results showed that:When the buried depth of aluminum box target was no more than 30 m,transient electromagnetic method can clearly identify the position of the aluminum box;when the buried depth of aluminum box was more than30 m,the buried depth and position of the aluminum box was not sure due to the unknown level of secondary eddy current field generated by aluminum box.展开更多
Detection of cracks is a great concern in production and operation processes of graphene based devices to ensure uniform quality.Here,we show a detection method for graphene cracks by electromagnetic induction.The tim...Detection of cracks is a great concern in production and operation processes of graphene based devices to ensure uniform quality.Here,we show a detection method for graphene cracks by electromagnetic induction.The time varying magnetic field leads to induced voltage signals on graphene,and the signals are detected by a voltmeter.The measured level of induced voltage is correlated with the number of cracks in graphene positively.The correlation is attributed to the increasing inductive characteristic of defective graphene,and it is verified by electromagnetic simulation and radio frequency analysis.Furthermore,we demonstrate that the induced voltage signal is insensitive to the doping level of graphene.Our work can potentially lead to the development of a high-throughput and reliable crack inspection technique for mass production of graphene applications.展开更多
X-ray digital imaging technology has found wide application owing to its advantages of real-time, visualization and rapid imaging. In substations the substantial electromagnetic interference has some influence on the ...X-ray digital imaging technology has found wide application owing to its advantages of real-time, visualization and rapid imaging. In substations the substantial electromagnetic interference has some influence on the live detection by the X-ray digital imaging technology, hindering the promotion of the technology in the detection of electric equipment. Based on a large number of field tests, the author carded out a series of researches on electromagnetic interference protection measures, image de-noising, and image enhancement algorithms.展开更多
With the development of laser technologies,nuclear reactions can happen in high-temperature plasma environments induced by lasers and have attracted a lot of attention from different physical disciplines.However,studi...With the development of laser technologies,nuclear reactions can happen in high-temperature plasma environments induced by lasers and have attracted a lot of attention from different physical disciplines.However,studies on nuclear reactions in plasma are still limited by detecting technologies.This is mainly due to the fact that extremely high electromagnetic pulses(EMPs)can also be induced when high-intensity lasers hit targets to induce plasma,and then cause dysfunction of many types of traditional detectors.Therefore,new particle detecting technologies are highly needed.In this paper,we report a recently developed gated fiber detector which can be used in harsh EMP environments.In this prototype detector,scintillating photons are coupled by fiber and then transferred to a gated photomultiplier tube which is located far away from the EMP source and shielded well.With those measures,the EMPs can be avoided which may result that the device has the capability to identify a single event of nuclear reaction products generated in laser-induced plasma from noise EMP backgrounds.This new type of detector can be widely used as a time-of-flight(TOF)detector in high-intensity laser nuclear physics experiments for detecting neutrons,photons,and other charged particles.展开更多
Electromagnetic acoustic emission technology is one of nondestructive testing, which can be used for defect detection of metal specimens. In this study, round and cracked metal specimens, round metal specimens, and in...Electromagnetic acoustic emission technology is one of nondestructive testing, which can be used for defect detection of metal specimens. In this study, round and cracked metal specimens, round metal specimens, and intact metal specimens were prepared. And the electromagnetic acoustic emission signals of the three specimens were collected. In addition, the local mean decomposition(LMD), Autoregressive model(AR model) and least squares support vector machine (LSSVM) algorithms were combined to identify the eletromagnetic acoustic emission signals of round and cracked, round, and intact specimens. According to the algorithm recognition results, the recognition accuracy of can reach above 97.5%, which has a higher recognition rate compared with SVM and BP neural network. The results of the study show that the algorithm is able to identify quickly and accurately crack defect in metal specimens.展开更多
Electromagnetic holographic data are characterized by two modes, suggesting that image reconstruction requires a dual-mode sensitivity field as well. We analyze an electromagnetic holographic field based on tomography...Electromagnetic holographic data are characterized by two modes, suggesting that image reconstruction requires a dual-mode sensitivity field as well. We analyze an electromagnetic holographic field based on tomography theory and Radon inverse transform to derive the expression of the electromagnetic holographic sensitivity field (EMHSF). Then, we apply the EMHSF calculated by using finite-element methods to flow simulations and holographic imaging. The results suggest that the EMHSF based on the partial derivative of radius of the complex electric potential φ is closely linked to the Radon inverse transform and encompasses the sensitivities of the amplitude and phase data. The flow images obtained with inversion using EMHSF better agree with the actual flow patterns. The EMHSF overcomes the limitations of traditional single-mode sensitivity fields.展开更多
Buried water-conducting and water-bearing structures in front of the driving head may easily lead to water bursts in coal mines. Therefore,it is very important for the safety of production to make an accurate and time...Buried water-conducting and water-bearing structures in front of the driving head may easily lead to water bursts in coal mines. Therefore,it is very important for the safety of production to make an accurate and timely forecast about water bursts. Based on the smoke ring effect of transient electromagnetic fields,the principle of transient electro-magnetic method used in detecting buried water-bearing structures in coal mines in advance,is discussed. Small multi-turn loop configurations used in coal mines are proposed and a field procedure of semicircular sector scanning is presented. The application of this method in one coal mine indicates that the technology has many advantages compared with others. The method is inexpensive,highly accurate and efficient. Suggestions are presented for future solutions to some remaining problems.展开更多
Particle Impact Noise Detection (PIND) test is a reliability screening technique for hermetic device that is prescribed by MIL-PRF-39016E. Some test conditions are specified, although MIL-PRF-39016E did not specify ho...Particle Impact Noise Detection (PIND) test is a reliability screening technique for hermetic device that is prescribed by MIL-PRF-39016E. Some test conditions are specified, although MIL-PRF-39016E did not specify how to obtain these condi- tions. This paper establishes the dynamics model of vibration process based on first order mass-spring system. The corresponding Simulink model is also established to simulate vibration process in optional input excitations. The response equations are derived in sinusoidal excitations and the required electromagnetic force waves are computed in order to obtain a given vibration and shock accelerations. Last, some simulation results are given.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11804073 and 61775050).
文摘The influence of the longitudinal acceleration and the angular acceleration of detecting target based on vortex electromagnetic waves in keyhole space are analyzed.The spectrum spreads of different orbital angular momentum(OAM)modes in different non-line-of-sight situations are simulated.The errors of target accelerations in detection are calculated and compared based on the OAM spectra spreading by using two combinations of composite OAM modes in the keyhole space.According to the research,the effects about spectrum spreads of higher OAM modes are more obvious.The error in detection is mainly affected by OAM spectrum spreading,which can be reduced by reasonably using different combinations of OAM modes in different practical situations.The above results provide a reference idea for investigating keyhole effect when vortex electromagnetic wave is used to detect accelerations.
基金supported by grants from the Basic Science Research Program(2021M3H4A1A03047327 and 2022R1A2C3006227)through the National Research Foundation of Korea,funded by the Ministry of Science,ICT,and Future Planningthe Fundamental R&D Program for Core Technology of Materials and the Industrial Strategic Technology Development Program(20020855),funded by the Ministry of Trade,Industry,and Energy,Republic of Korea+2 种基金the National Research Council of Science&Technology(NST),funded by the Korean Government(MSIT)(CRC22031-000)partially supported by POSCO and Hyundai Mobis,a start-up fund(S-2022-0096-000)the Postdoctoral Research Program of Sungkyunkwan University(2022).
文摘Multifunctional,flexible,and robust thin films capable of operating in demanding harsh temperature environments are crucial for various cutting-edge applications.This study presents a multifunctional Janus film integrating highly-crystalline Ti_(3)C_(2)T_(x) MXene and mechanically-robust carbon nanotube(CNT)film through strong hydrogen bonding.The hybrid film not only exhibits high electrical conductivity(4250 S cm^(-1)),but also demonstrates robust mechanical strength and durability in both extremely low and high temperature environments,showing exceptional resistance to thermal shock.This hybrid Janus film of 15μm thickness reveals remarkable multifunctionality,including efficient electromagnetic shielding effectiveness of 72 dB in X band frequency range,excellent infrared(IR)shielding capability with an average emissivity of 0.09(a minimal value of 0.02),superior thermal camouflage performance over a wide temperature range(−1 to 300℃)achieving a notable reduction in the radiated temperature by 243℃ against a background temperature of 300℃,and outstanding IR detection capability characterized by a 44%increase in resistance when exposed to 250 W IR radiation.This multifunctional MXene/CNT Janus film offers a feasible solution for electromagnetic shielding and IR shielding/detection under challenging conditions.
文摘The dual transmitter implements the equivalent anti-magnetic flux transient electromagnetic method, which can effectively reduce the scope of the transient electromagnetic detection blind area. However, this method is rarely reported in the detection of pipelines in urban geophysical exploration and the application of coal mines. Based on this, this paper realizes the equivalent anti-magnetic flux transient electromagnetic method based on the dual launcher. The suppression effect of this method on the blind area is analyzed by physical simulation. And the detection experiment of underground pipelines is carried out outdoors. The results show that the dual launcher can significantly reduce the turn-off time, thereby effectively reducing the impact of the blind area on the detection results, and the pipeline detection results verify the device’s effectiveness. Finally, based on the ground experimental results, the application prospect of mine advanced detection is discussed. Compared with other detection fields, the formation of blind areas is mainly caused by the equipment. If the dual launcher can be used to reduce the blind area, the accuracy of advanced detection can be improved more effectively. The above research results are of great significance for improving the detection accuracy of the underground transient electromagnetic method.
文摘In recent years,karst construction projects in the built-up area of Wuhan(capital of Hubei Province,China)are increasing,and the karst geological disasters have aroused social concerns.The actual engineering projects usually use shallow geophysical exploration methods to explore karst.This paper uses Spatial Auto-Correlation Method(SPAC)and electromagnetic Computerized Tomography(CT)to detect karst in urban built-up areas.Depending on the different physical properties of rock and soil,the SPAC method can better reveal the interface between soil and rock strata and the interface between soil layers.The electromagnetic CT method can identify strata according to the apparent absorption coefficient,which can better reveal the interface between soil and rock,the interface between the more intact and weathered rock.The SPAC method is mainly qualitative to measure the low-speed area,namely,the wrong geological body i.e.,karst cave,but also can detect the fracture zone or filling mode of karst cave,and at the same time,cannot use exploration holes or logging observation.The electromagnetic CT method can accurately detect the location and scale of the karst caves and has a higher accuracy detecting karst bands.In addition,exploration holes or well logging observations are also expected to be conducted,and their detection effect is greatly affected by lithology.
基金funded by the National Natural Science Foundation of China, grant number 11975307the National Defense Science and Technology Innovation Special Zone Project, grant number 19-H863-01-ZT-003-003-12。
文摘The anomaly detection of electromagnetic environment situation(EMES) has essential reference value for electromagnetic equipment behavior cognition and battlefield threat assessment.In this paper,we proposed a deep learning-based method for detecting anomalies in EMES to address the problem of relatively low efficiency of electromagnetic environment situation anomaly detection(EMES-AD).Firstly,the convolutional kernel extracts the static features of different regions of the EMES.Secondly,the dynamic features of the region are obtained by using a recurrent neural network(LSTM).Thirdly,the Spatio-temporal features of the region are recovered by using a de-convolutional network and then fused to predict the EMES.The structural similarity algorithm(SSIM) is used to determine whether it is anomalous.We developed the detection framework,de-signed the network parameters,simulated the data sets containing different anomalous types of EMES,and carried out the detection experiments.The experimental results show that the proposed method is effective.
基金support received from the National Basic Research Program of China (No2007CB209400)the National Natural Science Foundation of China (No50774085)the Young Scientists Fund of the School Science Foundation of CUMT (No2008A046)
文摘Tunneling machines, or excavators, are large and good conductors and affect the reliability of data gathering and interpretation in advanced detection using transient electromagnetic methods. In our experiment, we used a coincident-loop and central loop type of configuration, where the coil plane l) vertical to and 2) parallel to the working face. A SIROTEM instrument at different locations was used to observe the transient electromagnetic responses of the excavator and to analyze the response amplitudes. The result shows that the tunneling machine affects the advanced detection data and is related to the way the coil is coupled. When the excavator is 6 m from the observatory, the interference of tunneling machine can be ignored.
基金Project(41674109) supported by the National Natural Science Foundation of China
文摘Airborne electromagnetic transient method enjoys the advantages of high-efficiency and the high resolution of electromagnetic anomalies,especially suitable for mining detection around goaf areas and deep exploration of minerals.In this paper,we calculated the full-wave airborne transient electromagnetic data,according to the result of numerical research,the advantage of switch-off time response in electromagnetic detection was proofed via experiments.Firstly,based on the full-wave airborne transient electromagnetic system developed by Jilin University(JLU-ATEMI),we proposed a method to compute the full-waveform electromagnetic(EM)data of 3D model using the FDTD approach and convolution algorithm,and verify the calculation by the response of homogenous half-space.Then,through comparison of switch-off-time response and off-time response,we studied the effect of ramp time on anomaly detection.Finally,we arranged two experimental electromagnetic detection,the results indicated that the switch-off-time response can reveal the shallow target more effectively,and the full-waveform airborne electromagnetic system is an effective technique for shallow target detection.
基金supported by the Special Funds for Basic Scientific Research Business Expenses of Central Universities No. 2014GCYY0the Beijing Natural Science Foundation No. 4163076the Fundamental Research Funds for the Central Universities No. 328201801
文摘Hardware Trojan(HT) refers to a special module intentionally implanted into a chip or an electronic system. The module can be exploited by the attacker to achieve destructive functions. Unfortunately the HT is difficult to detecte due to its minimal resource occupation. In order to achieve an accurate detection with high efficiency, a HT detection method based on the electromagnetic leakage of the chip is proposed in this paper. At first, the dimensionality reduction and the feature extraction of the electromagnetic leakage signals in each group(template chip, Trojan-free chip and target chip) were realized by principal component analysis(PCA). Then, the Mahalanobis distances between the template group and the other groups were calculated. Finally, the differences between the Mahalanobis distances and the threshold were compared to determine whether the HT had been implanted into the target chip. In addition, the concept of the HT Detection Quality(HTDQ) was proposed to analyze and compare the performance of different detection methods. Our experiment results indicate that the accuracy of this detection method is 91.93%, and the time consumption is 0.042s in average, which shows a high HTDQ compared with three other methods.
基金supported by the National Natural Science Foundation of China(6110118461174159)
文摘The electromagnetic detection satellite (EDS) is a type of earth observation satellites (EOSs). The Information collected by EDSs plays an important role in some fields, such as industry, science and military. The scheduling of EDSs is a complex combinatorial optimization problem. Current research mainly focuses on the scheduling of imaging satellites and SAR satellites, but little work has been done on the scheduling of EDSs for its specific characteristics. A multi-satellite scheduling model is established, in which the specific constrains of EDSs are considered, then a scheduling algorithm based on the genetic algorithm (GA) is proposed. To deal with the specific constrains of EDSs, a penalty function method is introduced. However, it is hard to determine the appropriate penalty coefficient in the penalty function. Therefore, an adaptive adjustment mechanism of the penalty coefficient is designed to solve the problem, as well as improve the scheduling results. Experimental results are used to demonstrate the correctness and practicability of the proposed scheduling algorithm.
基金Supported by the Key Projects of Anhui Provincial Scientific and Technological Program (11010401015) the Key Program of National Natural Science Foundation of China (51134012)
文摘During advanced water detection using the transient electromagnetic method, the exploration effect for water-rich area is often poor due to the interference of bolts that are distributed in different positions in working face. Thus, the study on the interference characteristics of bolts in different states has important directive significance for improving the acquisition quality and data processing method in water detection. Based on the analysis of the distribution laws of magnetic field excited by small multi-turn coincident loop in full space of homogeneity, the test on the interference of bolts has been designed in the mine. Through drilling 18 holes around the overlapping coil in the working face, mass data are collected in order with the posi- tion change and the exposed bolt length. The results of comprehensive data analysis show that the transient electromagnetic field is strongly interfered as the distance between the bolt and the center of the coil is less than 3 m, and the interference varies greatly as the distance varies. On the other hand, the field induced by the bolts can be ignored as the distance exceeds 3 m. The findings can help to improve data acquisition and correction during advanced water detection when using the transient electromagnetic method.
基金National Natural Science Foundation of China(No.61304244)
文摘Aiming at the major failure mode of prestressed concrete cylinder pipes (PCCP),namely the fracture of prestressed steel wires,the broken wire detection technology based on orthogonal electromagnetic principle is studied. The detection system model is established and optimized by using COMSOL finite element simulation software. Furthermore,the theoretical analysis of the wire-breaking effect is carried out. The influence of factors on broken wire signal characteristics such as edge effect,circumferential relative position of the detector and broken wires,excitation frequency and relative permeability of steel wires is analyzed,which provides a theoretical guidance for the field detection. The influence of the steel cylinder structure on the simulation results is analyzed,which provides a reference for the improvement of calculation efficiency. The corresponding detection system is designed and implemented. Concretely,a high-voltage and high-power sinusoidal signal coil drive scheme based on sinusoidal pulse width modulation technology and an intelligent power module is innovatively proposed and the corresponding protection circuit is designed. The broken wire signal could be effectively extracted through a lock-in amplifier. The experimental results show that this system can effectively identify the broken wires with low cost.
基金Supported by the National Natural Science Foundation of China(61771041)。
文摘A novel electromagnetic tomography(EMT)system for defect detection of high-speed rail wheel is proposed,which differs from traditional electromagnetic tomography systems in its spatial arrangements of coils.A U-shaped sensor array was designed,and then a simulation model was built with the low frequency electromagnetic simulation software.Three different algorithms were applied to perform image reconstruction,therefore the defects can be detected from the reconstructed images.Based on the simulation results,an experimental system was built and image reconstruction were performed with the measured data.The reconstructed images obtained both from numerical simulation and experimental system indicated the locations of the defects of the wheel,which verified the feasibility of the EMT system and revealed its good application prospect in the future.
文摘In this paper,transient electromagnetic method was used to carry out the feasibility study on the detection and recognition of chamber blasting misfire.Firstly,an electromagnetic background field was established in the test;secondly,a benign conductor was preset in the chamber,and then the background field was eliminated after the electromagnetic field was measured;thirdly,the transient electromagnetic field was measured again after blasting;at last,the chamber blasting misfire was detected and recognized by comparing the change of eddy current field of the preset benign conductor before and after blasting.The test results showed that:When the buried depth of aluminum box target was no more than 30 m,transient electromagnetic method can clearly identify the position of the aluminum box;when the buried depth of aluminum box was more than30 m,the buried depth and position of the aluminum box was not sure due to the unknown level of secondary eddy current field generated by aluminum box.
文摘Detection of cracks is a great concern in production and operation processes of graphene based devices to ensure uniform quality.Here,we show a detection method for graphene cracks by electromagnetic induction.The time varying magnetic field leads to induced voltage signals on graphene,and the signals are detected by a voltmeter.The measured level of induced voltage is correlated with the number of cracks in graphene positively.The correlation is attributed to the increasing inductive characteristic of defective graphene,and it is verified by electromagnetic simulation and radio frequency analysis.Furthermore,we demonstrate that the induced voltage signal is insensitive to the doping level of graphene.Our work can potentially lead to the development of a high-throughput and reliable crack inspection technique for mass production of graphene applications.
文摘X-ray digital imaging technology has found wide application owing to its advantages of real-time, visualization and rapid imaging. In substations the substantial electromagnetic interference has some influence on the live detection by the X-ray digital imaging technology, hindering the promotion of the technology in the detection of electric equipment. Based on a large number of field tests, the author carded out a series of researches on electromagnetic interference protection measures, image de-noising, and image enhancement algorithms.
基金supported by the National Nature Science Foundation of China(Nos.11875191,11890714,11925502,11935001,and 11961141003)the Strategic Priority Research Program(No.CAS XDB1602)。
文摘With the development of laser technologies,nuclear reactions can happen in high-temperature plasma environments induced by lasers and have attracted a lot of attention from different physical disciplines.However,studies on nuclear reactions in plasma are still limited by detecting technologies.This is mainly due to the fact that extremely high electromagnetic pulses(EMPs)can also be induced when high-intensity lasers hit targets to induce plasma,and then cause dysfunction of many types of traditional detectors.Therefore,new particle detecting technologies are highly needed.In this paper,we report a recently developed gated fiber detector which can be used in harsh EMP environments.In this prototype detector,scintillating photons are coupled by fiber and then transferred to a gated photomultiplier tube which is located far away from the EMP source and shielded well.With those measures,the EMPs can be avoided which may result that the device has the capability to identify a single event of nuclear reaction products generated in laser-induced plasma from noise EMP backgrounds.This new type of detector can be widely used as a time-of-flight(TOF)detector in high-intensity laser nuclear physics experiments for detecting neutrons,photons,and other charged particles.
文摘Electromagnetic acoustic emission technology is one of nondestructive testing, which can be used for defect detection of metal specimens. In this study, round and cracked metal specimens, round metal specimens, and intact metal specimens were prepared. And the electromagnetic acoustic emission signals of the three specimens were collected. In addition, the local mean decomposition(LMD), Autoregressive model(AR model) and least squares support vector machine (LSSVM) algorithms were combined to identify the eletromagnetic acoustic emission signals of round and cracked, round, and intact specimens. According to the algorithm recognition results, the recognition accuracy of can reach above 97.5%, which has a higher recognition rate compared with SVM and BP neural network. The results of the study show that the algorithm is able to identify quickly and accurately crack defect in metal specimens.
基金supported by the National Science and Technology Major Project(No.2011ZX05020-006)
文摘Electromagnetic holographic data are characterized by two modes, suggesting that image reconstruction requires a dual-mode sensitivity field as well. We analyze an electromagnetic holographic field based on tomography theory and Radon inverse transform to derive the expression of the electromagnetic holographic sensitivity field (EMHSF). Then, we apply the EMHSF calculated by using finite-element methods to flow simulations and holographic imaging. The results suggest that the EMHSF based on the partial derivative of radius of the complex electric potential φ is closely linked to the Radon inverse transform and encompasses the sensitivities of the amplitude and phase data. The flow images obtained with inversion using EMHSF better agree with the actual flow patterns. The EMHSF overcomes the limitations of traditional single-mode sensitivity fields.
基金Project 40674074 supported by the National Natural Science Foundation of China20050290501 by the Specialized Research Fund for the Doctoral Programof Higher EducationD200409 by the Scientific Research Fund for Youth of China University of Mining & Technology
文摘Buried water-conducting and water-bearing structures in front of the driving head may easily lead to water bursts in coal mines. Therefore,it is very important for the safety of production to make an accurate and timely forecast about water bursts. Based on the smoke ring effect of transient electromagnetic fields,the principle of transient electro-magnetic method used in detecting buried water-bearing structures in coal mines in advance,is discussed. Small multi-turn loop configurations used in coal mines are proposed and a field procedure of semicircular sector scanning is presented. The application of this method in one coal mine indicates that the technology has many advantages compared with others. The method is inexpensive,highly accurate and efficient. Suggestions are presented for future solutions to some remaining problems.
文摘Particle Impact Noise Detection (PIND) test is a reliability screening technique for hermetic device that is prescribed by MIL-PRF-39016E. Some test conditions are specified, although MIL-PRF-39016E did not specify how to obtain these condi- tions. This paper establishes the dynamics model of vibration process based on first order mass-spring system. The corresponding Simulink model is also established to simulate vibration process in optional input excitations. The response equations are derived in sinusoidal excitations and the required electromagnetic force waves are computed in order to obtain a given vibration and shock accelerations. Last, some simulation results are given.