The joint European Space Agency and Chinese Academy of Sciences Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)mission will explore global dynamics of the magnetosphere under varying solar wind and interplane...The joint European Space Agency and Chinese Academy of Sciences Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)mission will explore global dynamics of the magnetosphere under varying solar wind and interplanetary magnetic field conditions,and simultaneously monitor the auroral response of the Northern Hemisphere ionosphere.Combining these large-scale responses with medium and fine-scale measurements at a variety of cadences by additional ground-based and space-based instruments will enable a much greater scientific impact beyond the original goals of the SMILE mission.Here,we describe current community efforts to prepare for SMILE,and the benefits and context various experiments that have explicitly expressed support for SMILE can offer.A dedicated group of international scientists representing many different experiment types and geographical locations,the Ground-based and Additional Science Working Group,is facilitating these efforts.Preparations include constructing an online SMILE Data Fusion Facility,the discussion of particular or special modes for experiments such as coherent and incoherent scatter radar,and the consideration of particular observing strategies and spacecraft conjunctions.We anticipate growing interest and community engagement with the SMILE mission,and we welcome novel ideas and insights from the solar-terrestrial community.展开更多
Cloud base height(CBH) is a crucial parameter for cloud radiative effect estimates, climate change simulations, and aviation guidance. However, due to the limited information on cloud vertical structures included in p...Cloud base height(CBH) is a crucial parameter for cloud radiative effect estimates, climate change simulations, and aviation guidance. However, due to the limited information on cloud vertical structures included in passive satellite radiometer observations, few operational satellite CBH products are currently available. This study presents a new method for retrieving CBH from satellite radiometers. The method first uses the combined measurements of satellite radiometers and ground-based cloud radars to develop a lookup table(LUT) of effective cloud water content(ECWC), representing the vertically varying cloud water content. This LUT allows for the conversion of cloud water path to cloud geometric thickness(CGT), enabling the estimation of CBH as the difference between cloud top height and CGT. Detailed comparative analysis of CBH estimates from the state-of-the-art ECWC LUT are conducted against four ground-based millimeter-wave cloud radar(MMCR) measurements, and results show that the mean bias(correlation coefficient) is0.18±1.79 km(0.73), which is lower(higher) than 0.23±2.11 km(0.67) as derived from the combined measurements of satellite radiometers and satellite radar-lidar(i.e., Cloud Sat and CALIPSO). Furthermore, the percentages of the CBH biases within 250 m increase by 5% to 10%, which varies by location. This indicates that the CBH estimates from our algorithm are more consistent with ground-based MMCR measurements. Therefore, this algorithm shows great potential for further improvement of the CBH retrievals as ground-based MMCR are being increasingly included in global surface meteorological observing networks, and the improved CBH retrievals will contribute to better cloud radiative effect estimates.展开更多
Ground-based microwave radiometers profilers(MWRPs)have been used in numerical weather prediction(NWP)systems and show different impacts on forecasts.Currently,there are around hundreds of ground-based MWPRs used in w...Ground-based microwave radiometers profilers(MWRPs)have been used in numerical weather prediction(NWP)systems and show different impacts on forecasts.Currently,there are around hundreds of ground-based MWPRs used in weather stations over China;however,the application of MWPRs in NWP systems is rather limited.In this work,two MWRP retrieved profiles were assimilated into the Weather Research and Forecasting(WRF)model for a rainstorm event that occurred in Beijing,China.The quality of temperature and humidity profiles retrieved from the MWRP was evaluated against radiosonde observations and showed the reliability of the two MWRP products.Then,comparisons between the measurements of ground-based rain gauges and the corresponding forecasted precipitation in different periods of the rainstorm were investigated.The results showed that assimilating the two MWRPs affected the distribution and intensity of rainfall,especially in the early stage of the rainstorm.With the development of the rainstorm,adding MWRP data showed only a slight influence on the precipitation during the stable and mature period of the rainstorm,since the two MWRP observations were too limited to affect the large area of heavy rainfall.展开更多
A long-term (9 years) gravity change in Chinese mainland is obtained on the basis of observation of the ground-based national gravity network. The result shows several features that may be related to sore, large-sca...A long-term (9 years) gravity change in Chinese mainland is obtained on the basis of observation of the ground-based national gravity network. The result shows several features that may be related to sore, large-scale groundwater pumping in North China, glacier-water flow and storage in Tianshan region, and pre seismic gravity changes of the 2008 MsS. 0 Wenchuan earthquake, which are spatially similar to co-seismi, changes but reversed in sign. These features are also shown in the result of the satellite-based GRACE obser vation, after a height effect is corrected with GPS data.展开更多
Ground-based synthetic aperture radar(GB-SAR) has been successfully applied to the ground deformation monitoring.However, due to the short length of the GB-SAR platform, the scope of observation is largely limited. Th...Ground-based synthetic aperture radar(GB-SAR) has been successfully applied to the ground deformation monitoring.However, due to the short length of the GB-SAR platform, the scope of observation is largely limited. The practical applications drive us to make improvements on the conventional linear rail GB-SAR system in order to achieve larger field imaging. First, a turntable is utilized to support the rotational movement of the radar.Next, a series of high-squint scanning is performed with multiple squint angles. Further, the high squint modulation phase of the echo data is eliminated. Then, a new multi-angle imaging method is performed in the wave number domain to expand the field of view. Simulation and real experiments verify the effectiveness of this method.展开更多
Deviation exists between measured and simulated microwave radiometer sounding data. The bias results in low-accuracy atmospheric temperature and humidity profiles simulated by Back Propagation artificial neural networ...Deviation exists between measured and simulated microwave radiometer sounding data. The bias results in low-accuracy atmospheric temperature and humidity profiles simulated by Back Propagation artificial neural network models. This paper evaluated a retrieving atmospheric temperature and humidity profiles method by adopting an input data adjustment-based Back Propagation artificial neural networks model. First, the sounding data acquired at a Nanjing meteorological site in June 2014 were inputted into the Mono RTM Radiative transfer model to simulate atmospheric downwelling radiance at the 22 spectral channels from 22.234 GHz to 58.8 GHz, and we performed a comparison and analysis of the real observed data; an adjustment model for the measured microwave radiometer sounding data was built. Second, we simulated the sounding data of the 22 channels using the sounding data acquired at the site from 2011 to 2013. Based on the simulated rightness temperature data and the sounding data, BP neural network-based models were trained for the retrieval of atmospheric temperature, water vapor density and relative humidity profiles. Finally, we applied the adjustment model to the microwave radiometer sounding data collected in July 2014, generating the corrected data. After that, we inputted the corrected data into the BP neural network regression model to predict the atmospheric temperature, vapor density and relative humidity profile at 58 high levels from 0 to 10 km. We evaluated our model's effect by comparing its output with the real measured data and the microwave radiometer's own second-level product. The experiments showed that the inversion model improves atmospheric temperature and humidity profile retrieval accuracy; the atmospheric temperature RMS error is between 1 K and 2.0 K; the water vapor density's RMS error is between 0.2 g/m^3 and 1.93 g/m3; and the relative humidity's RMS error is between 2.5% and 18.6%.展开更多
Measurements of carbon dioxide(CO_(2)),methane(CH_(4)),and carbon monoxide(CO)are of great importance in the Qinghai-Tibetan region,as it is the highest and largest plateau in the world affecting global weather and cl...Measurements of carbon dioxide(CO_(2)),methane(CH_(4)),and carbon monoxide(CO)are of great importance in the Qinghai-Tibetan region,as it is the highest and largest plateau in the world affecting global weather and climate systems.In this study,for the first time,we present CO_(2),CH_(4),and CO column measurements carried out by a Bruker EM27/SUN Fourier-transform infrared spectrometer(FTIR)at Golmud(36.42°E,94.91°N,2808 m)in August 2021.The mean and standard deviation of the column-average dry-air mixing ratio of CO_(2),CH_(4),and CO(XCO_(2),XCH_(4),and XCO)are 409.3±0.4 ppm,1905.5±19.4 ppb,and 103.1±7.7 ppb,respectively.The differences between the FTIR co-located TROPOMI/S5P satellite measurements at Golmud are 0.68±0.64%(13.1±12.2 ppb)for XCH_(4) and 9.81±3.48%(–10.7±3.8 ppb)for XCO,which are within their retrieval uncertainties.High correlations for both XCH_(4) and XCO are observed between the FTIR and S5P satellite measurements.Using the FLEXPART model and satellite measurements,we find that enhanced CH_(4) and CO columns in Golmud are affected by anthropogenic emissions transported from North India.This study provides an insight into the variations of the CO_(2),CH_(4),and CO columns in the Qinghai-Tibetan Plateau.展开更多
Performance test of a high precise accelerometer or an inertial sensor on the ground is inevitably limited by the seismic noise. A torsion pendulum has been used to investigate the performances of an electrostatic acc...Performance test of a high precise accelerometer or an inertial sensor on the ground is inevitably limited by the seismic noise. A torsion pendulum has been used to investigate the performances of an electrostatic accelerometer, where the test mass is suspended by a fiber to compensate for its weight, and this scheme demonstrates an advantage, compared with the high-voltage levitation scheme, in which the effect of the seismic noise can be suppressed for a few orders of magnitude in low frequencies. In this work, the capacitive electrode cage is proposed to be suspended by another pendulum, and theoretical analysis shows that the effects of the seismic noise can be further suppressed for more than one order by suspending the electrode cage.展开更多
Snow cover is one of the important components of land cover,and it is necessary to accurately monitor the depth and coverage of snow cover.Using the GPS signal receiver data and the basic principle of snow depth detec...Snow cover is one of the important components of land cover,and it is necessary to accurately monitor the depth and coverage of snow cover.Using the GPS signal receiver data and the basic principle of snow depth detection based on GPS-MR technology,the snow depth of the three sites on the Greenland PBO network GLS1,GLS2,and GLS3 from 2012 to 2018 was obtained.The inversion snow depth is affected by site drift,which is a quite difference from the measured snow depth.Combined with the stable reference point,the velocity field distribution of Greenland Island and the U-direction component change value of the station can be obtained through GAMIT calculation.By analyzing the glacial flow and U-direction component,the influence of the site drift on the snow depth was deducted,and finally compared the corrected inversion snow depth and measured snow depth found that the two were better than before the correction,the results were significantly improved,and the consistency was good.The analysis of the experimental results showed that in extremely cold areas such as Greenland Island,affected by glaciers,the continuous,real-time,high-time resolution snow depth around the measured station obtained by ground-based GPS tracking stations has a large gap with the measured snow depth value,and the gap will gradually increase with time.By deducting the impact of glacier drift,the trend of the two is the same and the consistency is good.The correctness and feasibility of the application of ground-based GPS snow cover theory in the polar area further expand the application scope and practical value of ground-based GPS in snow monitoring.展开更多
North China is a key region for studying geophysical progress. In this study, ground-based and Gravity Recovery and Climate Experiment(GRACE) gravity data from 2009 to 2013 are used to calculate the gravity change r...North China is a key region for studying geophysical progress. In this study, ground-based and Gravity Recovery and Climate Experiment(GRACE) gravity data from 2009 to 2013 are used to calculate the gravity change rate(GCR) using the polynomial fitting method. In general, the study area was divided into the Shanxi rift, Jing-Jin-Ji(Beijing-Tianjin-Hebei Province), and Bohai Bay Basin(BBB) regions. Results of the distribution of the GCR determined from ground-based gravimetry show that the GCR appears to be "negativepositive-negative" from west to east, which indicates that different geophysical mechanisms are involved in the tectonic activities of these regions. However, GRACE solutions are conducted over a larger spatial scale and are able to show a difference between southern and northern areas and a mass redistribution of land water storage.展开更多
Metal additive manufacturing(AM)has been extensively studied in recent decades.Despite the significant progress achieved in manufacturing complex shapes and structures,challenges such as severe cracking when using exi...Metal additive manufacturing(AM)has been extensively studied in recent decades.Despite the significant progress achieved in manufacturing complex shapes and structures,challenges such as severe cracking when using existing alloys for laser powder bed fusion(L-PBF)AM have persisted.These challenges arise because commercial alloys are primarily designed for conventional casting or forging processes,overlooking the fast cooling rates,steep temperature gradients and multiple thermal cycles of L-PBF.To address this,there is an urgent need to develop novel alloys specifically tailored for L-PBF technologies.This review provides a comprehensive summary of the strategies employed in alloy design for L-PBF.It aims to guide future research on designing novel alloys dedicated to L-PBF instead of adapting existing alloys.The review begins by discussing the features of the L-PBF processes,focusing on rapid solidification and intrinsic heat treatment.Next,the printability of the four main existing alloys(Fe-,Ni-,Al-and Ti-based alloys)is critically assessed,with a comparison of their conventional weldability.It was found that the weldability criteria are not always applicable in estimating printability.Furthermore,the review presents recent advances in alloy development and associated strategies,categorizing them into crack mitigation-oriented,microstructure manipulation-oriented and machine learning-assisted approaches.Lastly,an outlook and suggestions are given to highlight the issues that need to be addressed in future work.展开更多
The phenomenon of a target echo peak overlapping with the backscattered echo peak significantly undermines the detection range and precision of underwater laser fuzes.To overcome this issue,we propose a four-quadrant ...The phenomenon of a target echo peak overlapping with the backscattered echo peak significantly undermines the detection range and precision of underwater laser fuzes.To overcome this issue,we propose a four-quadrant dual-beam circumferential scanning laser fuze to distinguish various interference signals and provide more real-time data for the backscatter filtering algorithm.This enhances the algorithm loading capability of the fuze.In order to address the problem of insufficient filtering capacity in existing linear backscatter filtering algorithms,we develop a nonlinear backscattering adaptive filter based on the spline adaptive filter least mean square(SAF-LMS)algorithm.We also designed an algorithm pause module to retain the original trend of the target echo peak,improving the time discrimination accuracy and anti-interference capability of the fuze.Finally,experiments are conducted with varying signal-to-noise ratios of the original underwater target echo signals.The experimental results show that the average signal-to-noise ratio before and after filtering can be improved by more than31 d B,with an increase of up to 76%in extreme detection distance.展开更多
With the development of adaptive optics and post restore processing techniques,large aperture ground-based telescopes can obtain high-resolution images(HRIs)of targets.The pose of the space target can be estimated fro...With the development of adaptive optics and post restore processing techniques,large aperture ground-based telescopes can obtain high-resolution images(HRIs)of targets.The pose of the space target can be estimated from HRIs by several methods.As the target features obtained from the image are unstable,it is difficult to use existing methods for pose estimation.In this paper a method based on real-time target model matching to estimate the pose of space targets is proposed.First,the physicallyconstrained iterative deconvolution algorithm is used to obtain HRIs of the space target.Second,according to the 3D model,the ephemeris data,the observation time of the target,and the optical parameters of the telescope,the simulated observation image of the target in orbit is rendered by a scene simulation program.Finally,the target model searches through yaw,pitch,and roll until the correlation between the simulated observation image and the actual observation image shows an optimal match.The simulation results show that the proposed pose estimation method can converge to the local optimal value with an estimation error of about 1.6349°.展开更多
A differential optical absorption spectroscopy (DOAS)-like algorithm is developed to retrieve the column-averaged dry- air mole fraction of carbon dioxide from ground-based hyper-spectral measurements of the direct ...A differential optical absorption spectroscopy (DOAS)-like algorithm is developed to retrieve the column-averaged dry- air mole fraction of carbon dioxide from ground-based hyper-spectral measurements of the direct solar beam. Different to the spectral fitting method, which minimizes the difference between the observed and simulated spectra, the ratios of multiple channel-pairs--one weak and one strong absorption channel--are used to retrieve Xc02 from measurements of the shortwave infrared (SWIR) band. Based on sensitivity tests, a super channel-pair is carefully selected to reduce the effects of solar lines, water vapor, air temperature, pressure, instrument noise, and frequency shift on retrieval errors. The new algorithm reduces computational cost and the retrievals are le^s sensitive to temperature and H20 uncertainty than the spectral fitting method. Multi-day Total Carbon Column Observing Network (TCCON) measurements under clear-sky conditions at two sites (Tsukuba and Bremen) are used to derive Xc02 for the algorithm evaluation and validation. The DOAS-like results agree very well with those of the TCCON algorithm after correction of an airmass-dependent bias.展开更多
Slicing and post-treatment of SiC crystals have been a significant challenge in the integrated circuit and microelectronics industry.To compete with wire-sawing and mechanical grinding technology,a promis-ing approach...Slicing and post-treatment of SiC crystals have been a significant challenge in the integrated circuit and microelectronics industry.To compete with wire-sawing and mechanical grinding technology,a promis-ing approach combining laser slicing and laser polishing technologies has been innovatively applied to increase utilization and decrease damage defects for single crystal 4H-SiC.Significant material utiliza-tion has been achieved in the hybrid laser processes,where material loss is reduced by 75%compared to that of conventional machining technologies.Without any special process control or additional treat-ment,an internally modified layer formed by laser slicing can easily separate the 4H-SiC crystals using an external force of about∼3.6 MPa.The modified layer has been characterized using a micro-Raman method to determine residual stress.The sliced surface exhibits a combination of smooth and coarse appearances around the fluvial morphology,with an average surface roughness of over S_(a) 0.89μm.An amorphous phase surrounds the SiC substrate,with two dimensions of lattice spacing,d=0.261 nm and d=0.265 nm,confirmed by high-resolution transmission electron microscopy(HRTEM).The creation of laser-induced periodic surface nanostructures in the laser-polished surface results in a flatter surface with an average roughness of less than S_(a) 0.22μm.Due to the extreme cooling rates and multiple thermal cy-cles,dissociation of Si-C bonding,and phase separation are identified on the laser-polished surface,which is much better than that of the machining surface.We anticipate that this approach will be applicable to other high-value crystals and will have promising viability in the aerospace and semiconductor industries.展开更多
The near-Earth asteroid collisions could cause catastrophic disasters to humanity and the Earth,so it is crucial to monitor asteroids.Ground-based synthetic aperture radar(SAR)is an observation technique for high reso...The near-Earth asteroid collisions could cause catastrophic disasters to humanity and the Earth,so it is crucial to monitor asteroids.Ground-based synthetic aperture radar(SAR)is an observation technique for high resolution imaging of asteroids.The ground-based SAR requires a long integration time to achieve a large synthetic aperture,and the echo signal will be seriously affected by temporal-spatial variant troposphere.Traditional spatiotemporal freezing tropospheric models are ineffective.To cope with this,this paper models and analyses the impacts of temporal-spatial variant troposphere on ground-based SAR imaging of asteroids.For the background tropo-sphere,a temporal-spatial variant ray tracing method is proposed to trace the 4D(3D spatial+temporal)refractive index network provided by the numerical weather model,and calculate the error of the background troposphere.For the tropospheric turbulence,the Andrew power spectral model is used in conjunction with multiphase screen theory,and varying errors are obtained by tracking the changing position of the pierce point on the phase screen.Through simulation,the impact of temporal-spatial variant tropospheric errors on image quality is analyzed,and the simulation results show that the X-band echo signal is seriously affected by the troposphere and the echo signal must be compensated.展开更多
We present validation between total ozone from satellite and ground-based observations of the Dobson and Brewer spectrometers and ozone radiosonde at Zhongshan and Syowa Antarctic research stations, for September 2004...We present validation between total ozone from satellite and ground-based observations of the Dobson and Brewer spectrometers and ozone radiosonde at Zhongshan and Syowa Antarctic research stations, for September 2004 to March 2009. Results show that mean bias error between Zhongshan (Syowa) and Ozone Monitor Instrument Total Ozone Mapping Spectrometer (OMI-TOMS) data are -0.06%+3.32% (-0.44%:i:2.41%); between it and OMI Multi Axis Differential Optical Absorption Spec- troscopy (OMI-DOAS) data, the error is -0.34%--4.99% (-0.22%~4.85%). Mean absolute bias error values of OMI-TOMS data are less than those of OMI-DOAS. This means that total ozone of OMI-TOMS is closer to ground-based observation than that of OMI-DOAS. Comparison between direct observational total ozone of ground-based and integrated ozone from the ozone profile measured by ozone radiosonde shows that ozone amount calculated with the Solar Backscatter Ultraviolet (SBUV) method above balloon burst height is similar to corresponding Microwave Limb Sounder (MLS) data. Therefore, MLS data can be substituted with SBUV data to estimate ozone amount above that level. Mean bias error of the MLS ozone column is 2% compared with the ozonesonde column, with standard deviation within 9.5%. Comparison of different layers from ozone profiler and MLS data indi- cates that at the 215 hPa layer, the MLS ozone value is high, with relative deviation more than 20%. At the 100 hPa and 68 l^Pa layers, the MLS ozone value is also high. This deviation is mainly in spring, during Antarctic ozone hole appearance. In this period, at the height of severe ozone loss, relative deviation of MLS ozone values is especially large.展开更多
In recent years, ground-based micro-deformation monitoring radar has attracted much attention due to its excellent monitoring capability. By controlling the repeated campaigns of the radar antenna on a fixed track, gr...In recent years, ground-based micro-deformation monitoring radar has attracted much attention due to its excellent monitoring capability. By controlling the repeated campaigns of the radar antenna on a fixed track, ground-based micro-deformation monitoring radar can accomplish repeat-pass interferometry without a space baseline and thus obtain highprecision deformation data of a large scene at one time. However, it is difficult to guarantee absolute stable installation position in every campaign. If the installation position is unstable, the stability of the radar track will be affected randomly, resulting in time-varying baseline error. In this study, a correction method for this error is developed by analyzing the error distribution law while the spatial baseline is unknown. In practice, the error data are first identified by frequency components, then the data of each one-dimensional array(in azimuth direction or range direction) are grouped based on numerical distribution period, and finally the error is corrected by the nonlinear model established with each group.This method is verified with measured data from a slope in southern China, and the results show that the method can effectively correct the time-varying baseline error caused by rail instability and effectively improve the monitoring data accuracy of groundbased micro-deformation radar in short term and long term.展开更多
Advancements in sensor technology have significantly enhanced atmospheric monitoring.Notably,metal oxide and carbon(MO_(x)/C)hybrids have gained attention for their exceptional sensitivity and room-temperature sensing...Advancements in sensor technology have significantly enhanced atmospheric monitoring.Notably,metal oxide and carbon(MO_(x)/C)hybrids have gained attention for their exceptional sensitivity and room-temperature sensing performance.However,previous methods of synthesizing MO_(x)/C composites suffer from problems,including inhomogeneity,aggregation,and challenges in micropatterning.Herein,we introduce a refined method that employs a metal–organic framework(MOF)as a precursor combined with direct laser writing.The inherent structure of MOFs ensures a uniform distribution of metal ions and organic linkers,yielding homogeneous MO_(x)/C structures.The laser processing facilitates precise micropatterning(<2μm,comparable to typical photolithography)of the MO_(x)/C crystals.The optimized MOF-derived MO_(x)/C sensor rapidly detected ethanol gas even at room temperature(105 and 18 s for response and recovery,respectively),with a broad range of sensing performance from 170 to 3,400 ppm and a high response value of up to 3,500%.Additionally,this sensor exhibited enhanced stability and thermal resilience compared to previous MOF-based counterparts.This research opens up promising avenues for practical applications in MOF-derived sensing devices.展开更多
The use of broadband laser technology is a novel approach for inhibiting processes related to laser plasma interactions(LPIs).In this study,several preliminary experiments into broadband-laser-driven LPIs are carried ...The use of broadband laser technology is a novel approach for inhibiting processes related to laser plasma interactions(LPIs).In this study,several preliminary experiments into broadband-laser-driven LPIs are carried out using a newly established hundreds-of-joules broadband second-harmonic-generation laser facility.Through direct comparison with LPI results for a traditional narrowband laser,the actual LPI-suppression effect of the broadband laser is shown.The broadband laser had a clear suppressive effect on both back-stimulated Raman scattering and back-stimulated Brillouin scattering at laser intensities below 1×10^(15) W cm^(−2).An abnormal hot-electron phenomenon is also investigated,using targets of different thicknesses.展开更多
基金supported by Royal Society grant DHFR1211068funded by UKSA+14 种基金STFCSTFC grant ST/M001083/1funded by STFC grant ST/W00089X/1supported by NERC grant NE/W003309/1(E3d)funded by NERC grant NE/V000748/1support from NERC grants NE/V015133/1,NE/R016038/1(BAS magnetometers),and grants NE/R01700X/1 and NE/R015848/1(EISCAT)supported by NERC grant NE/T000937/1NSFC grants 42174208 and 41821003supported by the Research Council of Norway grant 223252PRODEX arrangement 4000123238 from the European Space Agencysupport of the AUTUMN East-West magnetometer network by the Canadian Space Agencysupported by NASA’s Heliophysics U.S.Participating Investigator Programsupport from grant NSF AGS 2027210supported by grant Dnr:2020-00106 from the Swedish National Space Agencysupported by the German Research Foundation(DFG)under number KR 4375/2-1 within SPP"Dynamic Earth"。
文摘The joint European Space Agency and Chinese Academy of Sciences Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)mission will explore global dynamics of the magnetosphere under varying solar wind and interplanetary magnetic field conditions,and simultaneously monitor the auroral response of the Northern Hemisphere ionosphere.Combining these large-scale responses with medium and fine-scale measurements at a variety of cadences by additional ground-based and space-based instruments will enable a much greater scientific impact beyond the original goals of the SMILE mission.Here,we describe current community efforts to prepare for SMILE,and the benefits and context various experiments that have explicitly expressed support for SMILE can offer.A dedicated group of international scientists representing many different experiment types and geographical locations,the Ground-based and Additional Science Working Group,is facilitating these efforts.Preparations include constructing an online SMILE Data Fusion Facility,the discussion of particular or special modes for experiments such as coherent and incoherent scatter radar,and the consideration of particular observing strategies and spacecraft conjunctions.We anticipate growing interest and community engagement with the SMILE mission,and we welcome novel ideas and insights from the solar-terrestrial community.
基金funded by the National Natural Science Foundation of China (Grant Nos. 42305150 and 42325501)the China Postdoctoral Science Foundation (Grant No. 2023M741774)。
文摘Cloud base height(CBH) is a crucial parameter for cloud radiative effect estimates, climate change simulations, and aviation guidance. However, due to the limited information on cloud vertical structures included in passive satellite radiometer observations, few operational satellite CBH products are currently available. This study presents a new method for retrieving CBH from satellite radiometers. The method first uses the combined measurements of satellite radiometers and ground-based cloud radars to develop a lookup table(LUT) of effective cloud water content(ECWC), representing the vertically varying cloud water content. This LUT allows for the conversion of cloud water path to cloud geometric thickness(CGT), enabling the estimation of CBH as the difference between cloud top height and CGT. Detailed comparative analysis of CBH estimates from the state-of-the-art ECWC LUT are conducted against four ground-based millimeter-wave cloud radar(MMCR) measurements, and results show that the mean bias(correlation coefficient) is0.18±1.79 km(0.73), which is lower(higher) than 0.23±2.11 km(0.67) as derived from the combined measurements of satellite radiometers and satellite radar-lidar(i.e., Cloud Sat and CALIPSO). Furthermore, the percentages of the CBH biases within 250 m increase by 5% to 10%, which varies by location. This indicates that the CBH estimates from our algorithm are more consistent with ground-based MMCR measurements. Therefore, this algorithm shows great potential for further improvement of the CBH retrievals as ground-based MMCR are being increasingly included in global surface meteorological observing networks, and the improved CBH retrievals will contribute to better cloud radiative effect estimates.
基金This work was supported by the National Key R&D Program of China[grant number 2017YFC1501700]the National Natural Science Foundation of China[grant number 41575033].
文摘Ground-based microwave radiometers profilers(MWRPs)have been used in numerical weather prediction(NWP)systems and show different impacts on forecasts.Currently,there are around hundreds of ground-based MWPRs used in weather stations over China;however,the application of MWPRs in NWP systems is rather limited.In this work,two MWRP retrieved profiles were assimilated into the Weather Research and Forecasting(WRF)model for a rainstorm event that occurred in Beijing,China.The quality of temperature and humidity profiles retrieved from the MWRP was evaluated against radiosonde observations and showed the reliability of the two MWRP products.Then,comparisons between the measurements of ground-based rain gauges and the corresponding forecasted precipitation in different periods of the rainstorm were investigated.The results showed that assimilating the two MWRPs affected the distribution and intensity of rainfall,especially in the early stage of the rainstorm.With the development of the rainstorm,adding MWRP data showed only a slight influence on the precipitation during the stable and mature period of the rainstorm,since the two MWRP observations were too limited to affect the large area of heavy rainfall.
基金supported by the National Natural Science Foundation of China (41004030)
文摘A long-term (9 years) gravity change in Chinese mainland is obtained on the basis of observation of the ground-based national gravity network. The result shows several features that may be related to sore, large-scale groundwater pumping in North China, glacier-water flow and storage in Tianshan region, and pre seismic gravity changes of the 2008 MsS. 0 Wenchuan earthquake, which are spatially similar to co-seismi, changes but reversed in sign. These features are also shown in the result of the satellite-based GRACE obser vation, after a height effect is corrected with GPS data.
基金supported by the National Natural Science Foundation of China(61801007)the Beijing Natural Science Foundation(4194075)。
文摘Ground-based synthetic aperture radar(GB-SAR) has been successfully applied to the ground deformation monitoring.However, due to the short length of the GB-SAR platform, the scope of observation is largely limited. The practical applications drive us to make improvements on the conventional linear rail GB-SAR system in order to achieve larger field imaging. First, a turntable is utilized to support the rotational movement of the radar.Next, a series of high-squint scanning is performed with multiple squint angles. Further, the high squint modulation phase of the echo data is eliminated. Then, a new multi-angle imaging method is performed in the wave number domain to expand the field of view. Simulation and real experiments verify the effectiveness of this method.
基金National Key Research and Development Program of China(2017YFC1501704,2016YFA0600703)Projects of International Cooperation and Exchanges NSFC(NSFC-RCUK_STFC)(61661136005)+2 种基金Major State Basic Research Development Program of China(973 Program)(2013CB430101)Six Talent Peaks Project in Jiangsu Province(2015-JY-013)Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD),Key Laboratory of Radiometric Calibration and Validation for Environmental Satellites,National Satellite Meteorological Center,China Meteorological Administration
文摘Deviation exists between measured and simulated microwave radiometer sounding data. The bias results in low-accuracy atmospheric temperature and humidity profiles simulated by Back Propagation artificial neural network models. This paper evaluated a retrieving atmospheric temperature and humidity profiles method by adopting an input data adjustment-based Back Propagation artificial neural networks model. First, the sounding data acquired at a Nanjing meteorological site in June 2014 were inputted into the Mono RTM Radiative transfer model to simulate atmospheric downwelling radiance at the 22 spectral channels from 22.234 GHz to 58.8 GHz, and we performed a comparison and analysis of the real observed data; an adjustment model for the measured microwave radiometer sounding data was built. Second, we simulated the sounding data of the 22 channels using the sounding data acquired at the site from 2011 to 2013. Based on the simulated rightness temperature data and the sounding data, BP neural network-based models were trained for the retrieval of atmospheric temperature, water vapor density and relative humidity profiles. Finally, we applied the adjustment model to the microwave radiometer sounding data collected in July 2014, generating the corrected data. After that, we inputted the corrected data into the BP neural network regression model to predict the atmospheric temperature, vapor density and relative humidity profile at 58 high levels from 0 to 10 km. We evaluated our model's effect by comparing its output with the real measured data and the microwave radiometer's own second-level product. The experiments showed that the inversion model improves atmospheric temperature and humidity profile retrieval accuracy; the atmospheric temperature RMS error is between 1 K and 2.0 K; the water vapor density's RMS error is between 0.2 g/m^3 and 1.93 g/m3; and the relative humidity's RMS error is between 2.5% and 18.6%.
基金supported by the National Natural Science Foundation of China(Grant No.42205140,41975035)the National Key Research and Development Program of China(2021YFB3901000).
文摘Measurements of carbon dioxide(CO_(2)),methane(CH_(4)),and carbon monoxide(CO)are of great importance in the Qinghai-Tibetan region,as it is the highest and largest plateau in the world affecting global weather and climate systems.In this study,for the first time,we present CO_(2),CH_(4),and CO column measurements carried out by a Bruker EM27/SUN Fourier-transform infrared spectrometer(FTIR)at Golmud(36.42°E,94.91°N,2808 m)in August 2021.The mean and standard deviation of the column-average dry-air mixing ratio of CO_(2),CH_(4),and CO(XCO_(2),XCH_(4),and XCO)are 409.3±0.4 ppm,1905.5±19.4 ppb,and 103.1±7.7 ppb,respectively.The differences between the FTIR co-located TROPOMI/S5P satellite measurements at Golmud are 0.68±0.64%(13.1±12.2 ppb)for XCH_(4) and 9.81±3.48%(–10.7±3.8 ppb)for XCO,which are within their retrieval uncertainties.High correlations for both XCH_(4) and XCO are observed between the FTIR and S5P satellite measurements.Using the FLEXPART model and satellite measurements,we find that enhanced CH_(4) and CO columns in Golmud are affected by anthropogenic emissions transported from North India.This study provides an insight into the variations of the CO_(2),CH_(4),and CO columns in the Qinghai-Tibetan Plateau.
基金Supported by the National Natural Science Foundation of China under Grant No 11235004
文摘Performance test of a high precise accelerometer or an inertial sensor on the ground is inevitably limited by the seismic noise. A torsion pendulum has been used to investigate the performances of an electrostatic accelerometer, where the test mass is suspended by a fiber to compensate for its weight, and this scheme demonstrates an advantage, compared with the high-voltage levitation scheme, in which the effect of the seismic noise can be suppressed for a few orders of magnitude in low frequencies. In this work, the capacitive electrode cage is proposed to be suspended by another pendulum, and theoretical analysis shows that the effects of the seismic noise can be further suppressed for more than one order by suspending the electrode cage.
文摘Snow cover is one of the important components of land cover,and it is necessary to accurately monitor the depth and coverage of snow cover.Using the GPS signal receiver data and the basic principle of snow depth detection based on GPS-MR technology,the snow depth of the three sites on the Greenland PBO network GLS1,GLS2,and GLS3 from 2012 to 2018 was obtained.The inversion snow depth is affected by site drift,which is a quite difference from the measured snow depth.Combined with the stable reference point,the velocity field distribution of Greenland Island and the U-direction component change value of the station can be obtained through GAMIT calculation.By analyzing the glacial flow and U-direction component,the influence of the site drift on the snow depth was deducted,and finally compared the corrected inversion snow depth and measured snow depth found that the two were better than before the correction,the results were significantly improved,and the consistency was good.The analysis of the experimental results showed that in extremely cold areas such as Greenland Island,affected by glaciers,the continuous,real-time,high-time resolution snow depth around the measured station obtained by ground-based GPS tracking stations has a large gap with the measured snow depth value,and the gap will gradually increase with time.By deducting the impact of glacier drift,the trend of the two is the same and the consistency is good.The correctness and feasibility of the application of ground-based GPS snow cover theory in the polar area further expand the application scope and practical value of ground-based GPS in snow monitoring.
基金supported by the National Natural Science Foundation of China(41304060)the national key basic research and development plan(2013CB733304)
文摘North China is a key region for studying geophysical progress. In this study, ground-based and Gravity Recovery and Climate Experiment(GRACE) gravity data from 2009 to 2013 are used to calculate the gravity change rate(GCR) using the polynomial fitting method. In general, the study area was divided into the Shanxi rift, Jing-Jin-Ji(Beijing-Tianjin-Hebei Province), and Bohai Bay Basin(BBB) regions. Results of the distribution of the GCR determined from ground-based gravimetry show that the GCR appears to be "negativepositive-negative" from west to east, which indicates that different geophysical mechanisms are involved in the tectonic activities of these regions. However, GRACE solutions are conducted over a larger spatial scale and are able to show a difference between southern and northern areas and a mass redistribution of land water storage.
基金financially supported by the National Key Research and Development Program of China(2022YFB4600302)National Natural Science Foundation of China(52090041)+1 种基金National Natural Science Foundation of China(52104368)National Major Science and Technology Projects of China(J2019-VII-0010-0150)。
文摘Metal additive manufacturing(AM)has been extensively studied in recent decades.Despite the significant progress achieved in manufacturing complex shapes and structures,challenges such as severe cracking when using existing alloys for laser powder bed fusion(L-PBF)AM have persisted.These challenges arise because commercial alloys are primarily designed for conventional casting or forging processes,overlooking the fast cooling rates,steep temperature gradients and multiple thermal cycles of L-PBF.To address this,there is an urgent need to develop novel alloys specifically tailored for L-PBF technologies.This review provides a comprehensive summary of the strategies employed in alloy design for L-PBF.It aims to guide future research on designing novel alloys dedicated to L-PBF instead of adapting existing alloys.The review begins by discussing the features of the L-PBF processes,focusing on rapid solidification and intrinsic heat treatment.Next,the printability of the four main existing alloys(Fe-,Ni-,Al-and Ti-based alloys)is critically assessed,with a comparison of their conventional weldability.It was found that the weldability criteria are not always applicable in estimating printability.Furthermore,the review presents recent advances in alloy development and associated strategies,categorizing them into crack mitigation-oriented,microstructure manipulation-oriented and machine learning-assisted approaches.Lastly,an outlook and suggestions are given to highlight the issues that need to be addressed in future work.
基金supported by the 2021 Open Project Fund of Science and Technology on Electromechanical Dynamic Control Laboratory,grant number 212-C-J-F-QT-2022-0020China Postdoctoral Science Foundation,grant number 2021M701713+1 种基金Postgraduate Research&Practice Innovation Program of Jiangsu Province,grant number KYCX23_0511the Jiangsu Funding Program for Excellent Postdoctoral Talent,grant number 20220ZB245。
文摘The phenomenon of a target echo peak overlapping with the backscattered echo peak significantly undermines the detection range and precision of underwater laser fuzes.To overcome this issue,we propose a four-quadrant dual-beam circumferential scanning laser fuze to distinguish various interference signals and provide more real-time data for the backscatter filtering algorithm.This enhances the algorithm loading capability of the fuze.In order to address the problem of insufficient filtering capacity in existing linear backscatter filtering algorithms,we develop a nonlinear backscattering adaptive filter based on the spline adaptive filter least mean square(SAF-LMS)algorithm.We also designed an algorithm pause module to retain the original trend of the target echo peak,improving the time discrimination accuracy and anti-interference capability of the fuze.Finally,experiments are conducted with varying signal-to-noise ratios of the original underwater target echo signals.The experimental results show that the average signal-to-noise ratio before and after filtering can be improved by more than31 d B,with an increase of up to 76%in extreme detection distance.
文摘With the development of adaptive optics and post restore processing techniques,large aperture ground-based telescopes can obtain high-resolution images(HRIs)of targets.The pose of the space target can be estimated from HRIs by several methods.As the target features obtained from the image are unstable,it is difficult to use existing methods for pose estimation.In this paper a method based on real-time target model matching to estimate the pose of space targets is proposed.First,the physicallyconstrained iterative deconvolution algorithm is used to obtain HRIs of the space target.Second,according to the 3D model,the ephemeris data,the observation time of the target,and the optical parameters of the telescope,the simulated observation image of the target in orbit is rendered by a scene simulation program.Finally,the target model searches through yaw,pitch,and roll until the correlation between the simulated observation image and the actual observation image shows an optimal match.The simulation results show that the proposed pose estimation method can converge to the local optimal value with an estimation error of about 1.6349°.
基金supported by the Strategic Priority Research Program–Climate Change: Carbon Budget and Relevant Issues (Grant No. XDA05040300)National Natural Science Foundation of China (Grant No. 41175028)
文摘A differential optical absorption spectroscopy (DOAS)-like algorithm is developed to retrieve the column-averaged dry- air mole fraction of carbon dioxide from ground-based hyper-spectral measurements of the direct solar beam. Different to the spectral fitting method, which minimizes the difference between the observed and simulated spectra, the ratios of multiple channel-pairs--one weak and one strong absorption channel--are used to retrieve Xc02 from measurements of the shortwave infrared (SWIR) band. Based on sensitivity tests, a super channel-pair is carefully selected to reduce the effects of solar lines, water vapor, air temperature, pressure, instrument noise, and frequency shift on retrieval errors. The new algorithm reduces computational cost and the retrievals are le^s sensitive to temperature and H20 uncertainty than the spectral fitting method. Multi-day Total Carbon Column Observing Network (TCCON) measurements under clear-sky conditions at two sites (Tsukuba and Bremen) are used to derive Xc02 for the algorithm evaluation and validation. The DOAS-like results agree very well with those of the TCCON algorithm after correction of an airmass-dependent bias.
基金supported by National Natural Science Foundation of China(No.62304249)a project funded by China Postdoctoral Science Foundation(No.2023M733704).
文摘Slicing and post-treatment of SiC crystals have been a significant challenge in the integrated circuit and microelectronics industry.To compete with wire-sawing and mechanical grinding technology,a promis-ing approach combining laser slicing and laser polishing technologies has been innovatively applied to increase utilization and decrease damage defects for single crystal 4H-SiC.Significant material utiliza-tion has been achieved in the hybrid laser processes,where material loss is reduced by 75%compared to that of conventional machining technologies.Without any special process control or additional treat-ment,an internally modified layer formed by laser slicing can easily separate the 4H-SiC crystals using an external force of about∼3.6 MPa.The modified layer has been characterized using a micro-Raman method to determine residual stress.The sliced surface exhibits a combination of smooth and coarse appearances around the fluvial morphology,with an average surface roughness of over S_(a) 0.89μm.An amorphous phase surrounds the SiC substrate,with two dimensions of lattice spacing,d=0.261 nm and d=0.265 nm,confirmed by high-resolution transmission electron microscopy(HRTEM).The creation of laser-induced periodic surface nanostructures in the laser-polished surface results in a flatter surface with an average roughness of less than S_(a) 0.22μm.Due to the extreme cooling rates and multiple thermal cy-cles,dissociation of Si-C bonding,and phase separation are identified on the laser-polished surface,which is much better than that of the machining surface.We anticipate that this approach will be applicable to other high-value crystals and will have promising viability in the aerospace and semiconductor industries.
基金supported in part by the National Natural Science Foundation of China(Nos.62101039,62201051)in part by the Shandong Excellent Young Scientists Fund Program(Overseas)in part by China Postdoctoral Science Foundation(No.2022M720443).
文摘The near-Earth asteroid collisions could cause catastrophic disasters to humanity and the Earth,so it is crucial to monitor asteroids.Ground-based synthetic aperture radar(SAR)is an observation technique for high resolution imaging of asteroids.The ground-based SAR requires a long integration time to achieve a large synthetic aperture,and the echo signal will be seriously affected by temporal-spatial variant troposphere.Traditional spatiotemporal freezing tropospheric models are ineffective.To cope with this,this paper models and analyses the impacts of temporal-spatial variant troposphere on ground-based SAR imaging of asteroids.For the background tropo-sphere,a temporal-spatial variant ray tracing method is proposed to trace the 4D(3D spatial+temporal)refractive index network provided by the numerical weather model,and calculate the error of the background troposphere.For the tropospheric turbulence,the Andrew power spectral model is used in conjunction with multiphase screen theory,and varying errors are obtained by tracking the changing position of the pierce point on the phase screen.Through simulation,the impact of temporal-spatial variant tropospheric errors on image quality is analyzed,and the simulation results show that the X-band echo signal is seriously affected by the troposphere and the echo signal must be compensated.
基金supported by the Chinese Polar Environment Comprehensive Investigation and Assessment Programs (Grant no.JDZX20110019)
文摘We present validation between total ozone from satellite and ground-based observations of the Dobson and Brewer spectrometers and ozone radiosonde at Zhongshan and Syowa Antarctic research stations, for September 2004 to March 2009. Results show that mean bias error between Zhongshan (Syowa) and Ozone Monitor Instrument Total Ozone Mapping Spectrometer (OMI-TOMS) data are -0.06%+3.32% (-0.44%:i:2.41%); between it and OMI Multi Axis Differential Optical Absorption Spec- troscopy (OMI-DOAS) data, the error is -0.34%--4.99% (-0.22%~4.85%). Mean absolute bias error values of OMI-TOMS data are less than those of OMI-DOAS. This means that total ozone of OMI-TOMS is closer to ground-based observation than that of OMI-DOAS. Comparison between direct observational total ozone of ground-based and integrated ozone from the ozone profile measured by ozone radiosonde shows that ozone amount calculated with the Solar Backscatter Ultraviolet (SBUV) method above balloon burst height is similar to corresponding Microwave Limb Sounder (MLS) data. Therefore, MLS data can be substituted with SBUV data to estimate ozone amount above that level. Mean bias error of the MLS ozone column is 2% compared with the ozonesonde column, with standard deviation within 9.5%. Comparison of different layers from ozone profiler and MLS data indi- cates that at the 215 hPa layer, the MLS ozone value is high, with relative deviation more than 20%. At the 100 hPa and 68 l^Pa layers, the MLS ozone value is also high. This deviation is mainly in spring, during Antarctic ozone hole appearance. In this period, at the height of severe ozone loss, relative deviation of MLS ozone values is especially large.
基金supported by the National Key R&D Program of China (2018YFC1508502)the National Natural Science Foundation of China (41601569,61661043,61631011)the Science and Technology Innovation Guidance Project of Inner Mongolia Autonomous Region (2019GG139,KCBJ2017,KCBJ 2018014,2019ZD022)。
文摘In recent years, ground-based micro-deformation monitoring radar has attracted much attention due to its excellent monitoring capability. By controlling the repeated campaigns of the radar antenna on a fixed track, ground-based micro-deformation monitoring radar can accomplish repeat-pass interferometry without a space baseline and thus obtain highprecision deformation data of a large scene at one time. However, it is difficult to guarantee absolute stable installation position in every campaign. If the installation position is unstable, the stability of the radar track will be affected randomly, resulting in time-varying baseline error. In this study, a correction method for this error is developed by analyzing the error distribution law while the spatial baseline is unknown. In practice, the error data are first identified by frequency components, then the data of each one-dimensional array(in azimuth direction or range direction) are grouped based on numerical distribution period, and finally the error is corrected by the nonlinear model established with each group.This method is verified with measured data from a slope in southern China, and the results show that the method can effectively correct the time-varying baseline error caused by rail instability and effectively improve the monitoring data accuracy of groundbased micro-deformation radar in short term and long term.
基金supported by the National Research Foundation of Korea(NRF)grants funded by the Ministry of Science and ICT(MSIT)(RS-2023-00251283,and 2022M3D1A2083618)by the Ministry of Education(2020R1A6A1A03040516).
文摘Advancements in sensor technology have significantly enhanced atmospheric monitoring.Notably,metal oxide and carbon(MO_(x)/C)hybrids have gained attention for their exceptional sensitivity and room-temperature sensing performance.However,previous methods of synthesizing MO_(x)/C composites suffer from problems,including inhomogeneity,aggregation,and challenges in micropatterning.Herein,we introduce a refined method that employs a metal–organic framework(MOF)as a precursor combined with direct laser writing.The inherent structure of MOFs ensures a uniform distribution of metal ions and organic linkers,yielding homogeneous MO_(x)/C structures.The laser processing facilitates precise micropatterning(<2μm,comparable to typical photolithography)of the MO_(x)/C crystals.The optimized MOF-derived MO_(x)/C sensor rapidly detected ethanol gas even at room temperature(105 and 18 s for response and recovery,respectively),with a broad range of sensing performance from 170 to 3,400 ppm and a high response value of up to 3,500%.Additionally,this sensor exhibited enhanced stability and thermal resilience compared to previous MOF-based counterparts.This research opens up promising avenues for practical applications in MOF-derived sensing devices.
基金supported by the National Science Foundation of China under Award Nos.12074353 and 12075227.
文摘The use of broadband laser technology is a novel approach for inhibiting processes related to laser plasma interactions(LPIs).In this study,several preliminary experiments into broadband-laser-driven LPIs are carried out using a newly established hundreds-of-joules broadband second-harmonic-generation laser facility.Through direct comparison with LPI results for a traditional narrowband laser,the actual LPI-suppression effect of the broadband laser is shown.The broadband laser had a clear suppressive effect on both back-stimulated Raman scattering and back-stimulated Brillouin scattering at laser intensities below 1×10^(15) W cm^(−2).An abnormal hot-electron phenomenon is also investigated,using targets of different thicknesses.