Ground-based microwave radiometers profilers(MWRPs)have been used in numerical weather prediction(NWP)systems and show different impacts on forecasts.Currently,there are around hundreds of ground-based MWPRs used in w...Ground-based microwave radiometers profilers(MWRPs)have been used in numerical weather prediction(NWP)systems and show different impacts on forecasts.Currently,there are around hundreds of ground-based MWPRs used in weather stations over China;however,the application of MWPRs in NWP systems is rather limited.In this work,two MWRP retrieved profiles were assimilated into the Weather Research and Forecasting(WRF)model for a rainstorm event that occurred in Beijing,China.The quality of temperature and humidity profiles retrieved from the MWRP was evaluated against radiosonde observations and showed the reliability of the two MWRP products.Then,comparisons between the measurements of ground-based rain gauges and the corresponding forecasted precipitation in different periods of the rainstorm were investigated.The results showed that assimilating the two MWRPs affected the distribution and intensity of rainfall,especially in the early stage of the rainstorm.With the development of the rainstorm,adding MWRP data showed only a slight influence on the precipitation during the stable and mature period of the rainstorm,since the two MWRP observations were too limited to affect the large area of heavy rainfall.展开更多
Deviation exists between measured and simulated microwave radiometer sounding data. The bias results in low-accuracy atmospheric temperature and humidity profiles simulated by Back Propagation artificial neural networ...Deviation exists between measured and simulated microwave radiometer sounding data. The bias results in low-accuracy atmospheric temperature and humidity profiles simulated by Back Propagation artificial neural network models. This paper evaluated a retrieving atmospheric temperature and humidity profiles method by adopting an input data adjustment-based Back Propagation artificial neural networks model. First, the sounding data acquired at a Nanjing meteorological site in June 2014 were inputted into the Mono RTM Radiative transfer model to simulate atmospheric downwelling radiance at the 22 spectral channels from 22.234 GHz to 58.8 GHz, and we performed a comparison and analysis of the real observed data; an adjustment model for the measured microwave radiometer sounding data was built. Second, we simulated the sounding data of the 22 channels using the sounding data acquired at the site from 2011 to 2013. Based on the simulated rightness temperature data and the sounding data, BP neural network-based models were trained for the retrieval of atmospheric temperature, water vapor density and relative humidity profiles. Finally, we applied the adjustment model to the microwave radiometer sounding data collected in July 2014, generating the corrected data. After that, we inputted the corrected data into the BP neural network regression model to predict the atmospheric temperature, vapor density and relative humidity profile at 58 high levels from 0 to 10 km. We evaluated our model's effect by comparing its output with the real measured data and the microwave radiometer's own second-level product. The experiments showed that the inversion model improves atmospheric temperature and humidity profile retrieval accuracy; the atmospheric temperature RMS error is between 1 K and 2.0 K; the water vapor density's RMS error is between 0.2 g/m^3 and 1.93 g/m3; and the relative humidity's RMS error is between 2.5% and 18.6%.展开更多
The sounding data of a multi-channel parallel ground-based microwave radiometer (MWR) in Fuzhou station in July and August in 2016 were compared with the sounding data of a radiosonde in the same position in the sam...The sounding data of a multi-channel parallel ground-based microwave radiometer (MWR) in Fuzhou station in July and August in 2016 were compared with the sounding data of a radiosonde in the same position in the same period. The results showed that the correlations between the two types of temperature or humidity detected by the microwave radiometer and the radiosonde were significant at 0.05 level, indicating that the overall changing trends of temperature or humidity detected by the two devices were similar. The temperature detected by the microwave radiometer and the radiosonde decreased with the increase of height. The difference between the changes in the height of the zero layer detected by the micro- wave radiometer and the radiosonde was not significant, and their trends were basically the same.展开更多
Cloud base height(CBH) is a crucial parameter for cloud radiative effect estimates, climate change simulations, and aviation guidance. However, due to the limited information on cloud vertical structures included in p...Cloud base height(CBH) is a crucial parameter for cloud radiative effect estimates, climate change simulations, and aviation guidance. However, due to the limited information on cloud vertical structures included in passive satellite radiometer observations, few operational satellite CBH products are currently available. This study presents a new method for retrieving CBH from satellite radiometers. The method first uses the combined measurements of satellite radiometers and ground-based cloud radars to develop a lookup table(LUT) of effective cloud water content(ECWC), representing the vertically varying cloud water content. This LUT allows for the conversion of cloud water path to cloud geometric thickness(CGT), enabling the estimation of CBH as the difference between cloud top height and CGT. Detailed comparative analysis of CBH estimates from the state-of-the-art ECWC LUT are conducted against four ground-based millimeter-wave cloud radar(MMCR) measurements, and results show that the mean bias(correlation coefficient) is0.18±1.79 km(0.73), which is lower(higher) than 0.23±2.11 km(0.67) as derived from the combined measurements of satellite radiometers and satellite radar-lidar(i.e., Cloud Sat and CALIPSO). Furthermore, the percentages of the CBH biases within 250 m increase by 5% to 10%, which varies by location. This indicates that the CBH estimates from our algorithm are more consistent with ground-based MMCR measurements. Therefore, this algorithm shows great potential for further improvement of the CBH retrievals as ground-based MMCR are being increasingly included in global surface meteorological observing networks, and the improved CBH retrievals will contribute to better cloud radiative effect estimates.展开更多
Among many scientific objectives of lunar exploration, investigations on lunar soil become more and more attractive to the scientists duo to the existence of abundant 3He and ilmenite in the lunar soil and their possi...Among many scientific objectives of lunar exploration, investigations on lunar soil become more and more attractive to the scientists duo to the existence of abundant 3He and ilmenite in the lunar soil and their possible utilization. Although the soil composition determination on the lunar surface is available by visible light spectrometer,γ/X-ray spectrometer etc, the evaluations on the total reserves of 3He and ilmenite in the lunar deep and on the thickness of the lunar soil are still impossible so far. In this paper, the authors first give a rough analysis of the microwave brightness temperature images of the lunar disc observed using the NRAO 12 Meter Telescope and Siberian Solar Radio Telescope; then introduce our researches on the microwave dielectric properties of lunar soil simulators; finally, discuss some basic relations between the microwave brightness temperature and lunar soil properties.展开更多
The lunar surface is a typical vacuum environment,and its harsh heat rejection conditions bring great challenges to the thermal control technology of the exploration mission.In addition to the radiator,the sublimator ...The lunar surface is a typical vacuum environment,and its harsh heat rejection conditions bring great challenges to the thermal control technology of the exploration mission.In addition to the radiator,the sublimator is recommended as one of the promising options for heat rejection.The sublimator makes use of water to freeze and sublimate in a porous medium,rejecting heat to the vacuum environment.The complex heat and mass transfer process involves many physical phenomena such as the freezing and sublimation phase change of water in the porous medium and the movement of the phase-change interface.In this paper,the visualized ground-based experimental approaches of space sublimation cooling were presented to reveal the moving law of threephase point and the growth phenomenon of ice-peak and icicle in microchannels under vacuum conditions.The visualized experiments and results prove that the freezing ice is divided into the porous ice-peak and the transparent icicle.As the sublimation progresses,the phase-change interface moves downward steadily,the length of the ice-peak increases,but the icicle decreases.The visualized experiments of space sublimation cooling in the capillary have guiding significance to reveal the sublimation cooling mechanism of water in the sublimator for lunar exploration missions.展开更多
In this report the author outlines China’s space exploration to date,describes plans for the next decade and proposes a framework for international cooperation in the exploration of
Lunar equatorial regolith temperature profiles were simulated using the half-limited solid heat conduction model. Based on the infrared data measured using the Diviner radiometer on the Lunar Reconnaissance Orbiter la...Lunar equatorial regolith temperature profiles were simulated using the half-limited solid heat conduction model. Based on the infrared data measured using the Diviner radiometer on the Lunar Reconnaissance Orbiter launched by the United Sates in June 2009, three factors influencing temperature profiles were analyzed. The infrared brightness temperature data from Diviner channel 7 were used to retrieve surface temperature. In simulating regolith temperature profiles, the retrieved temperature, rather than temperatures calculated from solar radiance at the lunar surface, were used as the input for surface temperature in solving the heat-conductive equation. The results showed that the bottom-layer temperature at depths of 6 m approached almost 246 K after 10000 iterations. The temperature was different to the temperature of 250 K at the same depth encountered in simulations using solar radiance. Simulations from both methods of surface temperatures over a lunar day gave similar variations. At lunar night, the temperature difference between the two was about 2 K; the main differences occurred when the solar elevation angle was very low when surface temperatures are largely affected by terrain topography. With no certainty in lunar temperature profiles at present, the advantage of the retrieval method using infrared sensor data as input to the boundary conditions in solving the lunar heat conduction equation is that simulations of surface temperature variations are more accurate. This is especially true in areas with large variations in terrain topography, where surface temperatures vary greatly because of shading from the sunlight.展开更多
基金This work was supported by the National Key R&D Program of China[grant number 2017YFC1501700]the National Natural Science Foundation of China[grant number 41575033].
文摘Ground-based microwave radiometers profilers(MWRPs)have been used in numerical weather prediction(NWP)systems and show different impacts on forecasts.Currently,there are around hundreds of ground-based MWPRs used in weather stations over China;however,the application of MWPRs in NWP systems is rather limited.In this work,two MWRP retrieved profiles were assimilated into the Weather Research and Forecasting(WRF)model for a rainstorm event that occurred in Beijing,China.The quality of temperature and humidity profiles retrieved from the MWRP was evaluated against radiosonde observations and showed the reliability of the two MWRP products.Then,comparisons between the measurements of ground-based rain gauges and the corresponding forecasted precipitation in different periods of the rainstorm were investigated.The results showed that assimilating the two MWRPs affected the distribution and intensity of rainfall,especially in the early stage of the rainstorm.With the development of the rainstorm,adding MWRP data showed only a slight influence on the precipitation during the stable and mature period of the rainstorm,since the two MWRP observations were too limited to affect the large area of heavy rainfall.
基金National Key Research and Development Program of China(2017YFC1501704,2016YFA0600703)Projects of International Cooperation and Exchanges NSFC(NSFC-RCUK_STFC)(61661136005)+2 种基金Major State Basic Research Development Program of China(973 Program)(2013CB430101)Six Talent Peaks Project in Jiangsu Province(2015-JY-013)Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD),Key Laboratory of Radiometric Calibration and Validation for Environmental Satellites,National Satellite Meteorological Center,China Meteorological Administration
文摘Deviation exists between measured and simulated microwave radiometer sounding data. The bias results in low-accuracy atmospheric temperature and humidity profiles simulated by Back Propagation artificial neural network models. This paper evaluated a retrieving atmospheric temperature and humidity profiles method by adopting an input data adjustment-based Back Propagation artificial neural networks model. First, the sounding data acquired at a Nanjing meteorological site in June 2014 were inputted into the Mono RTM Radiative transfer model to simulate atmospheric downwelling radiance at the 22 spectral channels from 22.234 GHz to 58.8 GHz, and we performed a comparison and analysis of the real observed data; an adjustment model for the measured microwave radiometer sounding data was built. Second, we simulated the sounding data of the 22 channels using the sounding data acquired at the site from 2011 to 2013. Based on the simulated rightness temperature data and the sounding data, BP neural network-based models were trained for the retrieval of atmospheric temperature, water vapor density and relative humidity profiles. Finally, we applied the adjustment model to the microwave radiometer sounding data collected in July 2014, generating the corrected data. After that, we inputted the corrected data into the BP neural network regression model to predict the atmospheric temperature, vapor density and relative humidity profile at 58 high levels from 0 to 10 km. We evaluated our model's effect by comparing its output with the real measured data and the microwave radiometer's own second-level product. The experiments showed that the inversion model improves atmospheric temperature and humidity profile retrieval accuracy; the atmospheric temperature RMS error is between 1 K and 2.0 K; the water vapor density's RMS error is between 0.2 g/m^3 and 1.93 g/m3; and the relative humidity's RMS error is between 2.5% and 18.6%.
文摘The sounding data of a multi-channel parallel ground-based microwave radiometer (MWR) in Fuzhou station in July and August in 2016 were compared with the sounding data of a radiosonde in the same position in the same period. The results showed that the correlations between the two types of temperature or humidity detected by the microwave radiometer and the radiosonde were significant at 0.05 level, indicating that the overall changing trends of temperature or humidity detected by the two devices were similar. The temperature detected by the microwave radiometer and the radiosonde decreased with the increase of height. The difference between the changes in the height of the zero layer detected by the micro- wave radiometer and the radiosonde was not significant, and their trends were basically the same.
基金funded by the National Natural Science Foundation of China (Grant Nos. 42305150 and 42325501)the China Postdoctoral Science Foundation (Grant No. 2023M741774)。
文摘Cloud base height(CBH) is a crucial parameter for cloud radiative effect estimates, climate change simulations, and aviation guidance. However, due to the limited information on cloud vertical structures included in passive satellite radiometer observations, few operational satellite CBH products are currently available. This study presents a new method for retrieving CBH from satellite radiometers. The method first uses the combined measurements of satellite radiometers and ground-based cloud radars to develop a lookup table(LUT) of effective cloud water content(ECWC), representing the vertically varying cloud water content. This LUT allows for the conversion of cloud water path to cloud geometric thickness(CGT), enabling the estimation of CBH as the difference between cloud top height and CGT. Detailed comparative analysis of CBH estimates from the state-of-the-art ECWC LUT are conducted against four ground-based millimeter-wave cloud radar(MMCR) measurements, and results show that the mean bias(correlation coefficient) is0.18±1.79 km(0.73), which is lower(higher) than 0.23±2.11 km(0.67) as derived from the combined measurements of satellite radiometers and satellite radar-lidar(i.e., Cloud Sat and CALIPSO). Furthermore, the percentages of the CBH biases within 250 m increase by 5% to 10%, which varies by location. This indicates that the CBH estimates from our algorithm are more consistent with ground-based MMCR measurements. Therefore, this algorithm shows great potential for further improvement of the CBH retrievals as ground-based MMCR are being increasingly included in global surface meteorological observing networks, and the improved CBH retrievals will contribute to better cloud radiative effect estimates.
基金Supported by the China-Russia Joint Research Center on Space Weather,Chinese Academy of Sciences
文摘Among many scientific objectives of lunar exploration, investigations on lunar soil become more and more attractive to the scientists duo to the existence of abundant 3He and ilmenite in the lunar soil and their possible utilization. Although the soil composition determination on the lunar surface is available by visible light spectrometer,γ/X-ray spectrometer etc, the evaluations on the total reserves of 3He and ilmenite in the lunar deep and on the thickness of the lunar soil are still impossible so far. In this paper, the authors first give a rough analysis of the microwave brightness temperature images of the lunar disc observed using the NRAO 12 Meter Telescope and Siberian Solar Radio Telescope; then introduce our researches on the microwave dielectric properties of lunar soil simulators; finally, discuss some basic relations between the microwave brightness temperature and lunar soil properties.
基金primarily funded by the cooperative project offered by Beijing Key Laboratory of Space Thermal Control Technologyfunded by China Postdoctoral Science Foundation(No.2020 M671618)。
文摘The lunar surface is a typical vacuum environment,and its harsh heat rejection conditions bring great challenges to the thermal control technology of the exploration mission.In addition to the radiator,the sublimator is recommended as one of the promising options for heat rejection.The sublimator makes use of water to freeze and sublimate in a porous medium,rejecting heat to the vacuum environment.The complex heat and mass transfer process involves many physical phenomena such as the freezing and sublimation phase change of water in the porous medium and the movement of the phase-change interface.In this paper,the visualized ground-based experimental approaches of space sublimation cooling were presented to reveal the moving law of threephase point and the growth phenomenon of ice-peak and icicle in microchannels under vacuum conditions.The visualized experiments and results prove that the freezing ice is divided into the porous ice-peak and the transparent icicle.As the sublimation progresses,the phase-change interface moves downward steadily,the length of the ice-peak increases,but the icicle decreases.The visualized experiments of space sublimation cooling in the capillary have guiding significance to reveal the sublimation cooling mechanism of water in the sublimator for lunar exploration missions.
文摘In this report the author outlines China’s space exploration to date,describes plans for the next decade and proposes a framework for international cooperation in the exploration of
文摘Lunar equatorial regolith temperature profiles were simulated using the half-limited solid heat conduction model. Based on the infrared data measured using the Diviner radiometer on the Lunar Reconnaissance Orbiter launched by the United Sates in June 2009, three factors influencing temperature profiles were analyzed. The infrared brightness temperature data from Diviner channel 7 were used to retrieve surface temperature. In simulating regolith temperature profiles, the retrieved temperature, rather than temperatures calculated from solar radiance at the lunar surface, were used as the input for surface temperature in solving the heat-conductive equation. The results showed that the bottom-layer temperature at depths of 6 m approached almost 246 K after 10000 iterations. The temperature was different to the temperature of 250 K at the same depth encountered in simulations using solar radiance. Simulations from both methods of surface temperatures over a lunar day gave similar variations. At lunar night, the temperature difference between the two was about 2 K; the main differences occurred when the solar elevation angle was very low when surface temperatures are largely affected by terrain topography. With no certainty in lunar temperature profiles at present, the advantage of the retrieval method using infrared sensor data as input to the boundary conditions in solving the lunar heat conduction equation is that simulations of surface temperature variations are more accurate. This is especially true in areas with large variations in terrain topography, where surface temperatures vary greatly because of shading from the sunlight.