As positioning sensors,edge computation power,and communication technologies continue to develop,a moving agent can now sense its surroundings and communicate with other agents.By receiving spatial information from bo...As positioning sensors,edge computation power,and communication technologies continue to develop,a moving agent can now sense its surroundings and communicate with other agents.By receiving spatial information from both its environment and other agents,an agent can use various methods and sensor types to localize itself.With its high flexibility and robustness,collaborative positioning has become a widely used method in both military and civilian applications.This paper introduces the basic fundamental concepts and applications of collaborative positioning,and reviews recent progress in the field based on camera,LiDAR(Light Detection and Ranging),wireless sensor,and their integration.The paper compares the current methods with respect to their sensor type,summarizes their main paradigms,and analyzes their evaluation experiments.Finally,the paper discusses the main challenges and open issues that require further research.展开更多
The development of the fifth-generation(5G)mobile communication systems has entered the commercialization stage.5G has a high data rate,low latency,and high reliability that can meet the basic demands of most industri...The development of the fifth-generation(5G)mobile communication systems has entered the commercialization stage.5G has a high data rate,low latency,and high reliability that can meet the basic demands of most industries and daily life,such as the Internet of Things(IoT),intelligent transportation systems,positioning,and navigation.The continuous progress and development of society have aroused wide concern.Positioning accuracy is the core demand for the applications,especially in complex environments such as airports,warehouses,supermarkets,and basements.However,many factors also affect the accuracy of positioning in those environments,for example,multipath effects,non-line-of-sight,and clock synchronization errors.This paper provides a comprehensive review of the existing works about positioning for the future wireless network and discusses its key techniques and algorithms,as well as the current development and future directions.We first outline the current traditional positioning technologies and algorithms,which are discussed and analyzed with the relevant literature.In addition,we also discuss application scenarios for wireless localization.By comparing different positioning systems,the challenges and future development directions of existing wireless positioning systems are prospected.展开更多
Artificial intelligence(AI)models are promising to improve the accuracy of wireless positioning systems,particularly in indoor environments where unpredictable radio propagation channel is a great challenge.Although g...Artificial intelligence(AI)models are promising to improve the accuracy of wireless positioning systems,particularly in indoor environments where unpredictable radio propagation channel is a great challenge.Although great efforts have been made to explore the effectiveness of different AI models,it is still an open problem whether these models,trained with the data collected from all base stations(BSs),could work when some BSs are unavailable.In this paper,we make the first effort to enhance the generalization ability of AI wireless positioning model to adapt to the scenario where only partial BSs work.Particularly,a Siamese Network based Wireless Positioning Model(SNWPM)is proposed to predict the location of mobile user equipment from channel state information(CSI)collected from 5G BSs.Furthermore,a Feature Aware Attention Module(FAAM)is introduced to reinforce the capability of feature extraction from CSI data.Experiments are conducted on the 2022 Wireless Communication AI Competition(WAIC)dataset.The proposed SNWPM achieves decimeter-level positioning accuracy even if the data of partial BSs are unavailable.Compared with other AI models,the proposed SNWPM can reduce the positioning error by nearly 50%to more than 60%while using less parameters and lower computation resources.展开更多
This paper presents a new distributed positioning algorithm for unknown nodes in a wireless sensor network. The algorithm is based exclusively on connectivity. First, assuming that the positions of the anchor nodes ar...This paper presents a new distributed positioning algorithm for unknown nodes in a wireless sensor network. The algorithm is based exclusively on connectivity. First, assuming that the positions of the anchor nodes are already known, a circular belt containing an unknown node is obtained using information about the anchor nodes that are in radio range of the unknown node, based on the geometric relationships and communication constraints among the unknown node and the anchor nodes. Then, the centroid of the circular belt is taken to be the estimated position of the unknown node. Since the algorithm is very simple and since the only communication needed is between the anchor nodes and the unknown node, the communication and computational loads are very small. Furthermore, the algorithm is robust because neither the failure of old unknown nodes nor the addition of new unknown nodes influences the positioning of unknown nodes to be located. A theoretical analysis and simulation results show that the algorithm does not produce any cumulative error and is insensitive to range error, and that a change in the number of sensor nodes does not affect the communication or computational load. These features make this algorithm suitable for all sizes of low-power wireless sensor networks.展开更多
A differential barometric altimetry technology based on the digital pressure sensors is put forward by using the existing mobile phone base station as reference. The height of known base sta- tion is precise. The pres...A differential barometric altimetry technology based on the digital pressure sensors is put forward by using the existing mobile phone base station as reference. The height of known base sta- tion is precise. The pressure and temperature of the known base station is measured by sensors and transmitted to users. The absolute height value of user will be calculated by combining the baromet- ric pressure values and temperature values from the base station with the locally measured values. In order to decrease system errors caused by inconsistency between the measured pressure value at base station and the locally measured pressure value, weights correction is applied based on multiple reference stations. The calculated height value is accurate due to eliminating the measured errors caused by irregular changes of atmospheric pressure, with the error less than 1 m. Resolution of ele- vation positioning depends upon the resolution of the pressure sensor, the relationship between which is approximately linear. When the resolution of sensor is 0.01 hPa, the resolution of elevation positioning is about 0. 1 m. In addition, the data frame format at base station is designed in this arti- cle. Experimental results show that the method is accurate, reliable, stable and has the ability to distinguish floors and stair steps.展开更多
To know the location of nodes is very important and valuable for wireless sensor networks (WSN), we present an improved positioning model (3D-PMWSN) to locate the nodes in WSN. In this model, grid in space is presente...To know the location of nodes is very important and valuable for wireless sensor networks (WSN), we present an improved positioning model (3D-PMWSN) to locate the nodes in WSN. In this model, grid in space is presented. When one tag is detected by a certain reader whose position is known, the tag’s position can be known through certain algorithm. The error estimation is given. Emulation shows that the positioning speed is relatively fast and positioning precision is relatively high.展开更多
Established on the Intel Multi-Core Embedded platform, using 802.11 Wireless Network protocols as the communication medium, combining with Radio Frequency-Communication and Ultrasonic Ranging, imple-ment a mobile term...Established on the Intel Multi-Core Embedded platform, using 802.11 Wireless Network protocols as the communication medium, combining with Radio Frequency-Communication and Ultrasonic Ranging, imple-ment a mobile terminal system in an intellectualized building. It can provide its holder such functions: 1) Accurate Positioning 2) Intelligent Navigation 3) Video Monitoring 4) Wireless Communication. The inno-vative point for this paper is to apply the multi-core computing on the embedded system to promote its com-puting speed and give a real-time performance and apply this system into the indoor environment for the purpose of emergent event or rescuing.展开更多
Location services not only provide address information, but also locate, monitor and track terminals on a real-time basis. To deliver fast and accurate location services, it is necessary to select an appropriate posit...Location services not only provide address information, but also locate, monitor and track terminals on a real-time basis. To deliver fast and accurate location services, it is necessary to select an appropriate positioning method. Currently, 3 methods are available for CDMA wireless positioning: network based, Mobile Station (MS) based, and GpsOne positioning.As these methods are different in location time, accuracy, availability, privacy, and operation cost, they shall be selected according to the actual network conditions. Network structure, information bearer protocols, and transport mode make the basis of a wireless positioning system. They can be implemented in different ways, and some details shall be specified by the operators.展开更多
The research on positioning system and spatial alignment is a big topic. In this paper, we proposed a design (that) studies two issues. One is the study of range positioning algorithm based on ZigBee communication sys...The research on positioning system and spatial alignment is a big topic. In this paper, we proposed a design (that) studies two issues. One is the study of range positioning algorithm based on ZigBee communication system. The other one is spatial alignment platform which is controlled with two servos. Hardware and software control system was realized, which also consists of two parts, ZigBee network positioning system and automatic orientation platform.展开更多
Although k-nearest neighbors (KNN) is a popular fingerprint match algorithm for its simplicity and accuracy, because it is sensitive to the circumstances, a fuzzy c-means (FCM) clustering algorithm is applied to i...Although k-nearest neighbors (KNN) is a popular fingerprint match algorithm for its simplicity and accuracy, because it is sensitive to the circumstances, a fuzzy c-means (FCM) clustering algorithm is applied to improve it. Thus, a KNN-based two-step FCM weighted (KTFW) algorithm for indoor positioning in wireless local area networks (WLAN) is presented in this paper. In KTFW algorithm, k reference points (RPs) chosen by KNN are clustered through FCM based on received signal strength (RSS) and location coordinates. The right clusters are chosen according to rules, so three sets of RPs are formed including the set of k RPs chosen by KNN and are given different weights. RPs supposed to have better contribution to positioning accuracy are given larger weights to improve the positioning accuracy. Simulation results indicate that KTFW generally outperforms KNN and its complexity is greatly reduced through providing initial clustering centers for FCM.展开更多
Pure inertial navigation system(INS) has divergent localization errors after a long time. In order to compensate the disadvantage, wireless sensor network(WSN) associated with the INS was applied to estimate the mobil...Pure inertial navigation system(INS) has divergent localization errors after a long time. In order to compensate the disadvantage, wireless sensor network(WSN) associated with the INS was applied to estimate the mobile target positioning. Taking traditional Kalman filter(KF) as the framework, the system equation of KF was established by the INS and the observation equation of position errors was built by the WSN. Meanwhile, the observation equation of velocity errors was established by the velocity difference between the INS and WSN, then the covariance matrix of Kalman filter measurement noise was adjusted with fuzzy inference system(FIS), and the fuzzy adaptive Kalman filter(FAKF) based on the INS/WSN was proposed. The simulation results show that the FAKF method has better accuracy and robustness than KF and EKF methods and shows good adaptive capacity with time-varying system noise. Finally, experimental results further prove that FAKF has the fast convergence error, in comparison with KF and EKF methods.展开更多
针对电动车辆无线电能传输(wireless power transfer,WPT)系统存在的半导体性能有限和定位困难的问题,提出了一种多对一高压无线充电自由定位系统。该系统采用逆变器串联输入的设计来适应高压应用场景,同时利用多绕组变压器实现逆变器...针对电动车辆无线电能传输(wireless power transfer,WPT)系统存在的半导体性能有限和定位困难的问题,提出了一种多对一高压无线充电自由定位系统。该系统采用逆变器串联输入的设计来适应高压应用场景,同时利用多绕组变压器实现逆变器的等效并联输出和向多路发射回路传输电能的功能,并采用了多对一的设计以扩大电动车的定位范围以实现无线充电的自由定位功能。为分析多绕组变压器的工作机理和研究多对一拓扑的能量传输特性,进行了等效电路分析和MATLAB仿真,并制作实验室原型样机进行了实验验证。基于实验和仿真结果,提出了一种基于多对一WPT拓扑的混合工作模式,可以有效地扩大电动车辆无线充电时的定位范围。研究和分析表明,文中所提出的拓扑结构可以有效地提高系统的输入电压以应用于高压场景,并能有效扩大电动车辆无线充电时的定位范围以实现自由定位。展开更多
基金National Natural Science Foundation of China(Grant No.62101138)Shandong Natural Science Foundation(Grant No.ZR2021QD148)+1 种基金Guangdong Natural Science Foundation(Grant No.2022A1515012573)Guangzhou Basic and Applied Basic Research Project(Grant No.202102020701)for providing funds for publishing this paper。
文摘As positioning sensors,edge computation power,and communication technologies continue to develop,a moving agent can now sense its surroundings and communicate with other agents.By receiving spatial information from both its environment and other agents,an agent can use various methods and sensor types to localize itself.With its high flexibility and robustness,collaborative positioning has become a widely used method in both military and civilian applications.This paper introduces the basic fundamental concepts and applications of collaborative positioning,and reviews recent progress in the field based on camera,LiDAR(Light Detection and Ranging),wireless sensor,and their integration.The paper compares the current methods with respect to their sensor type,summarizes their main paradigms,and analyzes their evaluation experiments.Finally,the paper discusses the main challenges and open issues that require further research.
基金supported by the Key Project of Guizhou Science and Technology Support Program,Guizhou Key Science and Support[2021]-001supported by the Key Laboratory of Cognitive Radio and Information Processing,Ministry of Education(Guilin University of Electronic Technology)(CRKL220203)+2 种基金Key Laboratory of Middle Atmosphere and Global Environment Observation(LAGEO)Institute of Atmospheric Physics,Chinese Academy of Sciences(LAGEO-2022-02)Henan Province Key R&D and Promotion Special Project(No.212102210166)“Double First-Class”Discipline Creation Project of Surveying Science and Technology(GCCRC202306).
文摘The development of the fifth-generation(5G)mobile communication systems has entered the commercialization stage.5G has a high data rate,low latency,and high reliability that can meet the basic demands of most industries and daily life,such as the Internet of Things(IoT),intelligent transportation systems,positioning,and navigation.The continuous progress and development of society have aroused wide concern.Positioning accuracy is the core demand for the applications,especially in complex environments such as airports,warehouses,supermarkets,and basements.However,many factors also affect the accuracy of positioning in those environments,for example,multipath effects,non-line-of-sight,and clock synchronization errors.This paper provides a comprehensive review of the existing works about positioning for the future wireless network and discusses its key techniques and algorithms,as well as the current development and future directions.We first outline the current traditional positioning technologies and algorithms,which are discussed and analyzed with the relevant literature.In addition,we also discuss application scenarios for wireless localization.By comparing different positioning systems,the challenges and future development directions of existing wireless positioning systems are prospected.
基金supported by National Natural Science Foundation of China (No. 62076251)sponsored by IMT-2020(5G) Promotion Group 5G+AI Work Group+3 种基金jointly sponsored by China Academy of Information and Communications TechnologyGuangdong OPPO Mobile Telecommunications Corp., Ltdvivo Mobile Communication Co., LtdHuawei Technologies Co., Ltd
文摘Artificial intelligence(AI)models are promising to improve the accuracy of wireless positioning systems,particularly in indoor environments where unpredictable radio propagation channel is a great challenge.Although great efforts have been made to explore the effectiveness of different AI models,it is still an open problem whether these models,trained with the data collected from all base stations(BSs),could work when some BSs are unavailable.In this paper,we make the first effort to enhance the generalization ability of AI wireless positioning model to adapt to the scenario where only partial BSs work.Particularly,a Siamese Network based Wireless Positioning Model(SNWPM)is proposed to predict the location of mobile user equipment from channel state information(CSI)collected from 5G BSs.Furthermore,a Feature Aware Attention Module(FAAM)is introduced to reinforce the capability of feature extraction from CSI data.Experiments are conducted on the 2022 Wireless Communication AI Competition(WAIC)dataset.The proposed SNWPM achieves decimeter-level positioning accuracy even if the data of partial BSs are unavailable.Compared with other AI models,the proposed SNWPM can reduce the positioning error by nearly 50%to more than 60%while using less parameters and lower computation resources.
基金This work was supported by the National Science Foundation of P.R.China(No.60425310)the Teaching and Research Award Program for Outstanding Young Teachers in Higher Education Institutions of the Ministry of Education,P.R.China (TRAPOYT).
文摘This paper presents a new distributed positioning algorithm for unknown nodes in a wireless sensor network. The algorithm is based exclusively on connectivity. First, assuming that the positions of the anchor nodes are already known, a circular belt containing an unknown node is obtained using information about the anchor nodes that are in radio range of the unknown node, based on the geometric relationships and communication constraints among the unknown node and the anchor nodes. Then, the centroid of the circular belt is taken to be the estimated position of the unknown node. Since the algorithm is very simple and since the only communication needed is between the anchor nodes and the unknown node, the communication and computational loads are very small. Furthermore, the algorithm is robust because neither the failure of old unknown nodes nor the addition of new unknown nodes influences the positioning of unknown nodes to be located. A theoretical analysis and simulation results show that the algorithm does not produce any cumulative error and is insensitive to range error, and that a change in the number of sensor nodes does not affect the communication or computational load. These features make this algorithm suitable for all sizes of low-power wireless sensor networks.
基金Supported by the National Natural Science Foundation of China(61001109)the Pilot Program for the New and Interdisciplinary Subjects of the Chinese Academy of Sciences(KJCX2-EWJ01)the Knowledge Innovation Program of the Chinese Academy of Sciences(KGCX2-EW-4071)
文摘A differential barometric altimetry technology based on the digital pressure sensors is put forward by using the existing mobile phone base station as reference. The height of known base sta- tion is precise. The pressure and temperature of the known base station is measured by sensors and transmitted to users. The absolute height value of user will be calculated by combining the baromet- ric pressure values and temperature values from the base station with the locally measured values. In order to decrease system errors caused by inconsistency between the measured pressure value at base station and the locally measured pressure value, weights correction is applied based on multiple reference stations. The calculated height value is accurate due to eliminating the measured errors caused by irregular changes of atmospheric pressure, with the error less than 1 m. Resolution of ele- vation positioning depends upon the resolution of the pressure sensor, the relationship between which is approximately linear. When the resolution of sensor is 0.01 hPa, the resolution of elevation positioning is about 0. 1 m. In addition, the data frame format at base station is designed in this arti- cle. Experimental results show that the method is accurate, reliable, stable and has the ability to distinguish floors and stair steps.
文摘To know the location of nodes is very important and valuable for wireless sensor networks (WSN), we present an improved positioning model (3D-PMWSN) to locate the nodes in WSN. In this model, grid in space is presented. When one tag is detected by a certain reader whose position is known, the tag’s position can be known through certain algorithm. The error estimation is given. Emulation shows that the positioning speed is relatively fast and positioning precision is relatively high.
文摘Established on the Intel Multi-Core Embedded platform, using 802.11 Wireless Network protocols as the communication medium, combining with Radio Frequency-Communication and Ultrasonic Ranging, imple-ment a mobile terminal system in an intellectualized building. It can provide its holder such functions: 1) Accurate Positioning 2) Intelligent Navigation 3) Video Monitoring 4) Wireless Communication. The inno-vative point for this paper is to apply the multi-core computing on the embedded system to promote its com-puting speed and give a real-time performance and apply this system into the indoor environment for the purpose of emergent event or rescuing.
文摘Location services not only provide address information, but also locate, monitor and track terminals on a real-time basis. To deliver fast and accurate location services, it is necessary to select an appropriate positioning method. Currently, 3 methods are available for CDMA wireless positioning: network based, Mobile Station (MS) based, and GpsOne positioning.As these methods are different in location time, accuracy, availability, privacy, and operation cost, they shall be selected according to the actual network conditions. Network structure, information bearer protocols, and transport mode make the basis of a wireless positioning system. They can be implemented in different ways, and some details shall be specified by the operators.
文摘The research on positioning system and spatial alignment is a big topic. In this paper, we proposed a design (that) studies two issues. One is the study of range positioning algorithm based on ZigBee communication system. The other one is spatial alignment platform which is controlled with two servos. Hardware and software control system was realized, which also consists of two parts, ZigBee network positioning system and automatic orientation platform.
文摘Although k-nearest neighbors (KNN) is a popular fingerprint match algorithm for its simplicity and accuracy, because it is sensitive to the circumstances, a fuzzy c-means (FCM) clustering algorithm is applied to improve it. Thus, a KNN-based two-step FCM weighted (KTFW) algorithm for indoor positioning in wireless local area networks (WLAN) is presented in this paper. In KTFW algorithm, k reference points (RPs) chosen by KNN are clustered through FCM based on received signal strength (RSS) and location coordinates. The right clusters are chosen according to rules, so three sets of RPs are formed including the set of k RPs chosen by KNN and are given different weights. RPs supposed to have better contribution to positioning accuracy are given larger weights to improve the positioning accuracy. Simulation results indicate that KTFW generally outperforms KNN and its complexity is greatly reduced through providing initial clustering centers for FCM.
基金Project(2013AA06A411)supported by the National High Technology Research and Development Program of ChinaProject(CXZZ14_1374)supported by the Graduate Education Innovation Program of Jiangsu Province,ChinaProject supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions,China
文摘Pure inertial navigation system(INS) has divergent localization errors after a long time. In order to compensate the disadvantage, wireless sensor network(WSN) associated with the INS was applied to estimate the mobile target positioning. Taking traditional Kalman filter(KF) as the framework, the system equation of KF was established by the INS and the observation equation of position errors was built by the WSN. Meanwhile, the observation equation of velocity errors was established by the velocity difference between the INS and WSN, then the covariance matrix of Kalman filter measurement noise was adjusted with fuzzy inference system(FIS), and the fuzzy adaptive Kalman filter(FAKF) based on the INS/WSN was proposed. The simulation results show that the FAKF method has better accuracy and robustness than KF and EKF methods and shows good adaptive capacity with time-varying system noise. Finally, experimental results further prove that FAKF has the fast convergence error, in comparison with KF and EKF methods.
文摘针对电动车辆无线电能传输(wireless power transfer,WPT)系统存在的半导体性能有限和定位困难的问题,提出了一种多对一高压无线充电自由定位系统。该系统采用逆变器串联输入的设计来适应高压应用场景,同时利用多绕组变压器实现逆变器的等效并联输出和向多路发射回路传输电能的功能,并采用了多对一的设计以扩大电动车的定位范围以实现无线充电的自由定位功能。为分析多绕组变压器的工作机理和研究多对一拓扑的能量传输特性,进行了等效电路分析和MATLAB仿真,并制作实验室原型样机进行了实验验证。基于实验和仿真结果,提出了一种基于多对一WPT拓扑的混合工作模式,可以有效地扩大电动车辆无线充电时的定位范围。研究和分析表明,文中所提出的拓扑结构可以有效地提高系统的输入电压以应用于高压场景,并能有效扩大电动车辆无线充电时的定位范围以实现自由定位。