PIT tests are usually performed when a mass distribution of High Explosive(H.E) projectile fragments is required. This paper shows the underwater detonation effects of 60 mm, M90 H.E. mortar bomb filled with Comp. B o...PIT tests are usually performed when a mass distribution of High Explosive(H.E) projectile fragments is required. This paper shows the underwater detonation effects of 60 mm, M90 H.E. mortar bomb filled with Comp. B on cylindrical concrete structure(concrete pipe closed at one end-similar to a PIT test)which is 2 m high(inner height) with inner diameter of also 2 m. Thickness of both wall and bottom of a pipe is 0.35 m. Detailed characteristics of concrete which is used for manufacturing of a pipe are specified. Mortar bomb is submerged directly in to the water(no free airspace around the bomb) with the nose pointing to the bottom of a pipe. Number and mass of fragments after detonation are presented by table and photographs. Fragments of dummy fuze, through which blasting cap was protruded, are collected and reassembled to form a shape of a fuze after detonation where expanding of fuze material due to a detonation products is visualized. After underwater detonation, detonation of the same mortar bomb is performed in an empty pipe and the effects of this kind of detonation are observed. Distance at which fragments generated from submerged mortar bomb will not reach concrete pipes wall is also determined.展开更多
To objectively obtain the three-dimensional coordinates of the projectile fuze proximity explosion when projectile intersects the head of missile target, we propose a dynamic seven photoelectric detection screen test ...To objectively obtain the three-dimensional coordinates of the projectile fuze proximity explosion when projectile intersects the head of missile target, we propose a dynamic seven photoelectric detection screen test method, which is made up of six plane detection screens and a flash photoelectric dynamic detection screen. The three-dimensional coordinates calculation model of the projectile proximity explosion position based on seven plane detection screens with dynamic characteristics is established.According to the relation of the dynamic seven photoelectric detection screen planes and the time values,the analytical function of the projectile proximity explosion position parameters under non-linear motion is derived. The projectile signal filtering method based on discrete wavelet transform is explored in this work. Additionally, the projectile signal recognition algorithm using an improved particle swarm is proposed. Based on the characteristics of the time duration and the signal peak error for the projectile passing through the detection screen, the signals attribution of the same projectile passing through six detection screens are analyzed for obtaining precise time values of the same projectile passing through the detection screens. On the basis of the projectile fuze proximity explosion test, the linear motion model and the proposed non-linear motion model are used to calculate and compare the same group of projectiles proximity explosion position parameters. The comparison of test results verifies that the proposed test method and calculation model in this work accurately obtain the actual projectile proximity explosion position parameters.展开更多
文摘PIT tests are usually performed when a mass distribution of High Explosive(H.E) projectile fragments is required. This paper shows the underwater detonation effects of 60 mm, M90 H.E. mortar bomb filled with Comp. B on cylindrical concrete structure(concrete pipe closed at one end-similar to a PIT test)which is 2 m high(inner height) with inner diameter of also 2 m. Thickness of both wall and bottom of a pipe is 0.35 m. Detailed characteristics of concrete which is used for manufacturing of a pipe are specified. Mortar bomb is submerged directly in to the water(no free airspace around the bomb) with the nose pointing to the bottom of a pipe. Number and mass of fragments after detonation are presented by table and photographs. Fragments of dummy fuze, through which blasting cap was protruded, are collected and reassembled to form a shape of a fuze after detonation where expanding of fuze material due to a detonation products is visualized. After underwater detonation, detonation of the same mortar bomb is performed in an empty pipe and the effects of this kind of detonation are observed. Distance at which fragments generated from submerged mortar bomb will not reach concrete pipes wall is also determined.
基金supported by Project of the National Natural Science Foundation of China (No.62073256, 61773305)the Key Science and Technology Program of Shaanxi Province (No.2020GY-125)Xi’an Science and Technology Innovation talent service enterprise project (No.2020KJRC0041)。
文摘To objectively obtain the three-dimensional coordinates of the projectile fuze proximity explosion when projectile intersects the head of missile target, we propose a dynamic seven photoelectric detection screen test method, which is made up of six plane detection screens and a flash photoelectric dynamic detection screen. The three-dimensional coordinates calculation model of the projectile proximity explosion position based on seven plane detection screens with dynamic characteristics is established.According to the relation of the dynamic seven photoelectric detection screen planes and the time values,the analytical function of the projectile proximity explosion position parameters under non-linear motion is derived. The projectile signal filtering method based on discrete wavelet transform is explored in this work. Additionally, the projectile signal recognition algorithm using an improved particle swarm is proposed. Based on the characteristics of the time duration and the signal peak error for the projectile passing through the detection screen, the signals attribution of the same projectile passing through six detection screens are analyzed for obtaining precise time values of the same projectile passing through the detection screens. On the basis of the projectile fuze proximity explosion test, the linear motion model and the proposed non-linear motion model are used to calculate and compare the same group of projectiles proximity explosion position parameters. The comparison of test results verifies that the proposed test method and calculation model in this work accurately obtain the actual projectile proximity explosion position parameters.