期刊文献+
共找到21篇文章
< 1 2 >
每页显示 20 50 100
An efficient physics-guided Bayesian framework for predicting ground settlement profile during excavations in clay
1
作者 Cong Tang Shuyu He Wanhuan Zhou 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第4期1411-1424,共14页
Recently,the application of Bayesian updating to predict excavation-induced deformation has proven successful and improved prediction accuracy significantly.However,updating the ground settlement profile,which is cruc... Recently,the application of Bayesian updating to predict excavation-induced deformation has proven successful and improved prediction accuracy significantly.However,updating the ground settlement profile,which is crucial for determining potential damage to nearby infrastructures,has received limited attention.To address this,this paper proposes a physics-guided simplified model combined with a Bayesian updating framework to accurately predict the ground settlement profile.The advantage of this model is that it eliminates the need for complex finite element modeling and makes the updating framework user-friendly.Furthermore,the model is physically interpretable,which can provide valuable references for construction adjustments.The effectiveness of the proposed method is demonstrated through two field case studies,showing that it can yield satisfactory predictions for the settlement profile. 展开更多
关键词 Bayesian updating EXCAVATIONS Ground settlement profile Simplified model UNCERTAINTY
下载PDF
Shallow Tunneling Method and Control Measure for Ground Surface Settlement
2
作者 Jinxiao Jia Xiong Zhou 《Journal of World Architecture》 2023年第3期46-52,共7页
In order to ensure that the tunnel deformation and surface settlement are controlled within the allowable range during the construction process,the design unit has compiled technical measures and monitoring schemes fo... In order to ensure that the tunnel deformation and surface settlement are controlled within the allowable range during the construction process,the design unit has compiled technical measures and monitoring schemes for ground settlement control of this project.Based on the example of a shallow tunneling project on Subway line 8,this paper analyzes and discusses the shallow tunneling method in detail and puts forward corresponding technical measures for ground settlement control. 展开更多
关键词 Shallow tunneling Ground surface settlement control Advance ductule
下载PDF
Effectiveness of predicting tunneling-induced ground settlements using machine learning methods with small datasets 被引量:7
3
作者 Linan Liu Wendy Zhou Marte Gutierrez 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2022年第4期1028-1041,共14页
Prediction of tunneling-induced ground settlements is an essential task,particularly for tunneling in urban settings.Ground settlements should be limited within a tolerable threshold to avoid damages to aboveground st... Prediction of tunneling-induced ground settlements is an essential task,particularly for tunneling in urban settings.Ground settlements should be limited within a tolerable threshold to avoid damages to aboveground structures.Machine learning(ML)methods are becoming popular in many fields,including tunneling and underground excavations,as a powerful learning and predicting technique.However,the available datasets collected from a tunneling project are usually small from the perspective of applying ML methods.Can ML algorithms effectively predict tunneling-induced ground settlements when the available datasets are small?In this study,seven ML methods are utilized to predict tunneling-induced ground settlement using 14 contributing factors measured before or during tunnel excavation.These methods include multiple linear regression(MLR),decision tree(DT),random forest(RF),gradient boosting(GB),support vector regression(SVR),back-propagation neural network(BPNN),and permutation importancebased BPNN(PI-BPNN)models.All methods except BPNN and PI-BPNN are shallow-structure ML methods.The effectiveness of these seven ML approaches on small datasets is evaluated using model accuracy and stability.The model accuracy is measured by the coefficient of determination(R2)of training and testing datasets,and the stability of a learning algorithm indicates robust predictive performance.Also,the quantile error(QE)criterion is introduced to assess model predictive performance considering underpredictions and overpredictions.Our study reveals that the RF algorithm outperforms all the other models with the highest model prediction accuracy(0.9)and stability(3.0210^(-27)).Deep-structure ML models do not perform well for small datasets with relatively low model accuracy(0.59)and stability(5.76).The PI-BPNN architecture is proposed and designed for small datasets,showing better performance than typical BPNN.Six important contributing factors of ground settlements are identified,including tunnel depth,the distance between tunnel face and surface monitoring points(DTM),weighted average soil compressibility modulus(ACM),grouting pressure,penetrating rate and thrust force. 展开更多
关键词 Ground settlements TUNNELING Machine learning Small dataset Model accuracy Model stability Feature importance
下载PDF
Analysis of ground surface settlement in anisotropic clays using extreme gradient boosting and random forest regression models 被引量:3
4
作者 Runhong Zhang Yongqin Li +2 位作者 Anthony T.C.Goh Wengang Zhang Zhixiong Chen 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2021年第6期1478-1484,共7页
Excessive ground surface settlement induced by pit excavation(i.e.braced excavation) can potentially result in damage to the nearby buildings and facilities.In this paper,extensive finite element analyses have been ca... Excessive ground surface settlement induced by pit excavation(i.e.braced excavation) can potentially result in damage to the nearby buildings and facilities.In this paper,extensive finite element analyses have been carried out to evaluate the effects of various structural,soil and geometric properties on the maximum ground surface settlement induced by braced excavation in anisotropic clays.The anisotropic soil properties considered include the plane strain shear strength ratio(i.e.the ratio of the passive undrained shear strength to the active one) and the unloading shear modulus ratio.Other parameters considered include the support system stiffness,the excavation width to excavation depth ratio,and the wall penetration depth to excavation depth ratio.Subsequently,the maximum ground surface settlement of a total of 1479 hypothetical cases were analyzed by various machine learning algorithms including the ensemble learning methods(extreme gradient boosting(XGBoost) and random forest regression(RFR)algorithms).The prediction models developed by the XGBoost and RFR are compared with that of two conventional regression methods,and the predictive accuracy of these models are assessed.This study aims to highlight the technical feasibility and applicability of advanced ensemble learning methods in geotechnical engineering practice. 展开更多
关键词 Anisotropic clay Numerical analysis Ground surface settlement Ensemble learning
下载PDF
Feasibility study on sinkhole monitoring with fiber optic strain sensing nerves
5
作者 Yuxin Gao Honghu Zhu +3 位作者 Liang Qiao Xifeng Liu Chao Wei Wei Zhang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第11期3059-3070,共12页
Anthropogenic activity-induced sinkholes pose a serious threat to building safety and human life nowadays.Real-time detection and early warning of sinkhole formation are a key and urgent problem in urban areas.This pa... Anthropogenic activity-induced sinkholes pose a serious threat to building safety and human life nowadays.Real-time detection and early warning of sinkhole formation are a key and urgent problem in urban areas.This paper presents an experimental study to evaluate the feasibility of fiber optic strain sensing nerves in sinkhole monitoring.Combining the artificial neural network(ANN)and particle image velocimetry(PIV)techniques,a series of model tests have been performed to explore the relationship between strain measurements and sinkhole development and to establish a conversion model from strain data to ground settlements.It is demonstrated that the failure mechanism of the soil above the sinkhole developed from a triangle failure plane to a vertical failure plane with increasing collapse volume.Meanwhile,the soil-embedded fiber optic strain sensing nerves allowed deformation monitoring of the ground soil in real time.Furthermore,the characteristics of the measured strain profiles indicate the locations of sinkholes and the associated shear bands.Based on the strain data,the ANN model predicts the ground settlement well.Additionally,micro-anchored fiber optic cables have been proven to increase the soil-to-fiber strain transfer efficiency for large deformation monitoring of ground collapse. 展开更多
关键词 SINKHOLE Geotechnical monitoring Distributed fiber optic sensing(DFOS) Artificial neural network(ANN) Ground settlement Soil arching Micro-anchor
下载PDF
Application of ANSYS 3D FEM in Studies of Surface Deformation Caused by Pipe Jacking 被引量:10
6
作者 LI Fabin FANG Kun LI Hechao 《Wuhan University Journal of Natural Sciences》 CAS 2007年第4期633-637,共5页
By using site observation data and establishing 3D model using ANSYS software, this paper has discussed the strain change of stratum stress during process of jacking-in and the impact of machine head on ground surface... By using site observation data and establishing 3D model using ANSYS software, this paper has discussed the strain change of stratum stress during process of jacking-in and the impact of machine head on ground surface under different frontal resistances. Analysis of the two cases shows that soil pressure reaches its maximum point when the soil is right above machine head, and soil stress will gradually decline when machine head passes over it. It also shows that impact brought by pipe-jacking construction on stress change of the surrounding soil is limited. The thesis suggest that road surface should be consolidated and soil condition be improved before construction to prevent loss and disaster caused by road surface deformation, jacking force can be increased so that jacking efficiency can be enhanced when ground stratum is well filled with soil, but the frontal resistance facing machine head should be equal to surrounding soil pressure in order to avoid rise of ground surface. 展开更多
关键词 trenchless technology pipe jacking finite element ground settlement
下载PDF
An intelligent procedure for updating deformation prediction of braced excavation in clay using gated recurrent unit neural networks 被引量:3
7
作者 Jie Yang Yingjing Liu +1 位作者 Saffet Yagiz Farid Laouafa 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2021年第6期1485-1499,共15页
This paper aims to establish an intelligent procedure that combines the observational method with the existing deep learning technique for updating deformation of braced excavation in clay.The gated recurrent unit(GRU... This paper aims to establish an intelligent procedure that combines the observational method with the existing deep learning technique for updating deformation of braced excavation in clay.The gated recurrent unit(GRU) neural network is adopted to formulate the forecast model and learn the potential rules in the field observations using the Nesterov-accelerated Adam(Nadam) algorithm.In the proposed procedure,the GRU-based forecast model is first trained based on the field data of previous and current stages.Then,the field data of the current stage are used as input to predict the deformation response of the next stage via the previously trained GRU-based forecast model.This updating process will loop up till the end of the excavation.This procedure has the advantage of directly predicting the deformation response of unexcavated stages based on the monitoring data.The proposed intelligent procedure is verified on two well-documented cases in terms of accuracy and reliability.The results indicate that both wall deflection and ground settlement are accurately predicted as the excavation proceeds.Furthermore,the advantages of the proposed intelligent procedure compared with the Bayesian/o ptimization updating are illustrated. 展开更多
关键词 Braced excavation Deep learning CLAY Wall deflection Ground settlement Deformation updating
下载PDF
Theoretical investigation of interaction between a rectangular plate and fractional viscoelastic foundation 被引量:3
8
作者 Chengcheng Zhang Honghu Zhu +1 位作者 Bin Shi Linchao Liu 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2014年第4期373-379,共7页
The interaction between plates and foundations is a typical problem encountered in geotechnical engineering. The long-term plate performance is highly dependent on the theological characteristics of ground soil. Compa... The interaction between plates and foundations is a typical problem encountered in geotechnical engineering. The long-term plate performance is highly dependent on the theological characteristics of ground soil. Compared with conventional linear theology, the fractional calculus-based theory is a more powerful mathematical tool that can address this issue. This paper proposes a fractional Merchant model (FMM) to investigate the time-dependent behavior of a simply supported rectangular plate on viscoelastic foundation. The correspondence principle involving Laplace transforms was employed to derive the closed-form solutions of plate response under uniformly distributed load. The plate deflection, bending moment, and foundation reaction calculated using the FMM were compared with the results obtained from the analogous elastic model (EM) and the standard Merchant model (SMM). It is shown that the upper and lower bound solutions of the FMM can be determined using the EM. In addition, a parametric study was performed to examine the influences of the model parameters on the time- dependent behavior of the plate-foundation interaction problem. The results indicate that a small fractional differential order corresponds to a plate resting on a sandy soil foundation, while the fractional differential order value should be increased for a clayey soil foundation. The long-term performance of a foundation plate can be accurately simulated by varying the values of the fractional differential order and the viscosity coefficient. The observations from this study reveal that the proposed fractional model has the capability to capture the variation of plate deflection over many decades of time. 展开更多
关键词 Viscoelastic foundation Plate deflection Ground settlement Fractional derivative Merchant model RheologyLaplace transform
下载PDF
Analytical solutions of ground settlement induced by yaw in a space curved shield tunnel
9
作者 Jiannan Xie Pengfei Li +2 位作者 Mingju Zhang Fei Jia Shaohua Li 《Underground Space》 SCIE EI CSCD 2023年第6期86-103,共18页
This paper aims to provide the analytical solutions of the ground settlement for a space curved shield tunnel in the case of yaw construction.Settlement inducements include ground loss and construction loads,and two c... This paper aims to provide the analytical solutions of the ground settlement for a space curved shield tunnel in the case of yaw construction.Settlement inducements include ground loss and construction loads,and two corresponding analytical models have been proposed in this study.Three-dimensional image theory has been adopted to calculate the ground settlement due to ground loss.Yawrelated parameters are introduced into the calculation model to deduce the relevant laws of the ground settlement.Based on modified Mindlin solutions,analytical models are established to calculate the ground settlement induced by construction loads,such as the frontal additional thrust,axial friction of shield shell,and the grouting pressure.The method of calculating the position of the shield machine in the ground is refined,and the influence area of construction loads from the shield machine is optimized.Subsequently,the obtained solutions are validated by a numerical model and field data.Besides,a comparison reveals that the proposed model is the composition of three classical analytical models,thus it excels them in solving the problem mentioned.Finally,parametric analyses of yaw are conducted to examine yaw angle and pitch angle on ground settlement.The proposed model can effectively predict ground settlement caused by the spatial linear shield tunneling process. 展开更多
关键词 Shield tunnel Space line Yaw excavation Ground loss Construction load Ground settlement
原文传递
Study on Ground Deformation during Shield Tunnel Construction
10
作者 Zhongkun Zhang 《Journal of Construction Research》 2021年第2期19-26,共8页
Through the systematic analysis of the ground settlement generated by the process of shield tunneling,the relationships between ground deformation and construction parameters are studied in this paper.Based on the ass... Through the systematic analysis of the ground settlement generated by the process of shield tunneling,the relationships between ground deformation and construction parameters are studied in this paper.Based on the assumption of linear small deformation,a mathematical model of the relationship between ground deformation and construction parameters is set up.The principle and method of optimization for estimating ground deformation is studied.The actual measured data are compared with the results of theoretical analysis in a case.Considering different ground formations in different construction sites with different adverse effects on surface and underground structures,the ground surface deformations caused by shield tunneling is an aimed topic in this paper.The contributions and research implications are the revealed relationships between the ground deformation and the shield tunneling parameters during construction. 展开更多
关键词 Shield tunnel Ground settlement Construction parameters Mathematical model Maximum estimation Shield tunnel Ground settlement Construction parameters Mathematical model Maximum estimation
下载PDF
Predictions of ground surface settlement for shield tunnels in sandy cobble stratum based on stochastic medium theory and empirical formulas
11
作者 Fan Wang Xiuli Du Pengfei Li 《Underground Space》 SCIE EI CSCD 2023年第4期189-203,共15页
This paper focuses on the prediction of ground surface settlement induced by shield tunnelling in sandy cobble stratum.Based on the stochastic medium theory,an analytical solution to predict the surface settlement is ... This paper focuses on the prediction of ground surface settlement induced by shield tunnelling in sandy cobble stratum.Based on the stochastic medium theory,an analytical solution to predict the surface settlement is developed considering the difference between soil and tunnel volume loss.Then,the effects of tunnel geometries,influence angle and volume loss on the characteristics of surface settlement are discussed.Through back analysis,a total of 103 groups of field monitoring data of surface settlement induced by shield tunnelling in sandy cobble stratum are examined to investigate the statistical characteristics of the maximum settlement,settlement trough width and volume loss.An empirical prediction is presented based on the results of back analysis.Finally,the analytical solution and empirical expression are validated by the comparisons with the results of model tests and field monitoring.Results show that the soil at ground surface has an overall dilative response for most of the shield tunnelling in sandy cobble stratum.In addition,the developed analytical solution is applicable and reasonable for surface settlement prediction.Meanwhile,the proposed empirical formula also shows good per-formance in some cases,providing an approach or a reference for engineering designers to preliminarily evaluate the surface settlement. 展开更多
关键词 Shield tunnelling Sandy cobble stratum Ground surface settlement Stochastic medium theory Empirical formulas
原文传递
Analytical solutions to ground settlement induced by ground loss and construction loadings during curved shield tunneling 被引量:16
12
作者 Shao-hua LI Ming-ju ZHANG Peng-fei LI 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2021年第4期296-313,共18页
This paper focuses on the ground settlement induced by the construction of a curved shield tunnel.Ground loss and construction loadings are the two factors causing ground settlement,and two corresponding analytical mo... This paper focuses on the ground settlement induced by the construction of a curved shield tunnel.Ground loss and construction loadings are the two factors causing ground settlement,and two corresponding analytical models were developed.First,the ground settlement due to ground loss was analyzed based on 3D image theory.The"integrative gap at shield tail"(IGST)and overcutting gap of a curved tunnel were considered.Second,the ground settlement due to construction loadings was analyzed by modifying Mindlin's solutions.The additional thrust,frictional force,and grouting pressure were considered.Subsequently,a case study and a parameter analysis were conducted.Finally,the obtained solutions were compared with a classical analytical solution,numerical simulations,and monitored results.The proposed model could effectively predict the ground settlement in-duced during curved shield tunneling. 展开更多
关键词 Curved tunnel Image theory Mindlin's solution Ground loss Ground settlement
原文传递
Centrifuge modeling of tunneling-induced ground surface settlement in sand 被引量:1
13
作者 Hu Lu Jiangwei Shi +1 位作者 Yu Wang Rong Wang 《Underground Space》 SCIE EI 2019年第4期302-309,共8页
Stress changes in the soil induced by tunnel excavation may cause excessive ground settlement.However,high-quality experimental data on ground settlement due to tunnel excavation are limited.In this study,centrifuge t... Stress changes in the soil induced by tunnel excavation may cause excessive ground settlement.However,high-quality experimental data on ground settlement due to tunnel excavation are limited.In this study,centrifuge tests are conducted to investigate the threedimensional ground surface settlement,considering different intersection angles and cover-to-tunnel diameter ratios.The results indicate that the major influence zone along the longitudinal direction on the ground surface settlement is±1.25D,where D is the tunnel diameter.When the monitoring section is perpendicular to the tunneling direction,the transverse ground settlement due to the tunnel excavation is symmetrical with respect to the tunnel centerline.In contrast,an asymmetric ground settlement profile is observed when the monitoring section intersects the tunneling direction at an angle of 60.Applying a Gaussian curve to fit the ground surface settlement curve,the width parameter,K(i.e.,the distance between the tunnel centerline and the inflection point of the settlement trough to the tunnel burial depth),varies from 0.33 to 0.39.The ground surface settlement induced by twin tunnel excavation can be captured reasonably by superimposing two identical Gaussian curves.When the cover to tunnel diameter ratios(C/D)are 1.5 and 2.7,the maximum ground surface settlements are 0.67%of D and 0.35%of D,respectively.It is clear that the maximum ground surface settlement decreases with an increase in the C/D ratio. 展开更多
关键词 Ground settlement Centrifuge modeling Intersection angle Cover-to-tunnel diameter Three-dimensional
原文传递
Ground settlement during tunneling in groundwater drawdown environment-Influencing factors 被引量:1
14
作者 Chungsik Yoo 《Underground Space》 SCIE EI 2016年第1期20-29,共10页
In this paper,the results of a parametric study on groundwater drawdown-induced surface settlement during tunneling in waterbearing ground are presented.A calibrated stress–pore pressure coupled finite element model ... In this paper,the results of a parametric study on groundwater drawdown-induced surface settlement during tunneling in waterbearing ground are presented.A calibrated stress–pore pressure coupled finite element model was adopted for the parametric analysis.The results were analyzed to establish the relationships between key design issues,such as the ground surface settlement and groundwater drawdown,and influencing factors.An artificial neural network(ANN)-based sensitivity analysis was performed to obtain insight into the relative importance of the influencing factors.The results indicated that the primary influencing factors on the settlement development are the thickness and stiffness of the soil layer within the drawdown zone and the lining permeability,while the initial void ratio and the permeability of the soil layer were considered secondary influencing factors.Practical implications and findings of the study are discussed. 展开更多
关键词 Conventional tunneling Ground settlement GROUNDWATER Finite element method Stress-pore pressure coupled analysis
原文传递
Effect of Wall Deformation on Dewatering-Induced Ground Surface Settlement
15
作者 NAI Kimsrorng 李明广 陈锦剑 《Journal of Shanghai Jiaotong university(Science)》 EI 2020年第4期417-425,共9页
In practice,dewatering for pressure relief is commonly undertaken during ongoing excavation to secure bottom stability against basal upheaval.Simultaneously,through unloading,wall deflection is obviously observed.Noti... In practice,dewatering for pressure relief is commonly undertaken during ongoing excavation to secure bottom stability against basal upheaval.Simultaneously,through unloading,wall deflection is obviously observed.Noticing that both cause soil deformations,this research is to study the effect of wall deformation on dewateringinduced settlement.A coupled numerical analysis of finite-difference software is employed to model Shanghai soft soils under multi-aquifer-aquitard systems(MAASs)by analyzing the results in association with an empirical approach.Consequently,through gradual force reduction,shear strength at soil-wall interface is significantly diminished.As wall deformation increases instantaneously upon lower loading,wall surface becomes deformedly bending;this condition causes the challenge to workability of shear strength.Moreover,wall deformation caused by unloading affects dewatering-induced settlement substantially.Under smaller loading,large wall deflection is observed;soil plane of failure caused by both sliding and compression occurs along slip curve,with weaker shear-strength soils at rD=0.4 and stronger shear-strength soils between rD=0.4 and rD=0.65,where rD is the distance from the wall that is normalized by the depth measured from ground surface.During dewatering,stronger soils tend to drag weaker soils upward to reduce large differential settlements caused by additional compression.Consequently,settlement becomes larger at rD=0.4 and smaller at rD=0.65.Remarkably,at rD>2.3,both settlement curves that result from numerical analysis and empirical method show overlapping;this indicates that the unloading effect on dewatering-induced settlement at rD>2.3 is insignificant.Furthermore,as wall reaches maximum allowable wall deflection by 67%applied force,additional compression caused by dewatering after loading remains smaller than that under 70%applied force,contributing to smaller dewatering-induced settlement. 展开更多
关键词 DEWATERING wall deformation confined aquifer GROUNDWATER ground surface settlement
原文传递
Performance of braced excavation in residual soil with groundwater drawdown 被引量:9
16
作者 W.G.Zhang A.T.C.Goh +3 位作者 K.H.Goh O.Y.S.Chew D.Zhou Runhong Zhang 《Underground Space》 SCIE EI 2018年第2期150-165,共16页
In densely built-up Singapore,relatively stiffsecant-bored piles and diaphragm walls are commonly used in cut-and-cover works to minimize the impact of ground movement on the adjacent structures and utilities.For exca... In densely built-up Singapore,relatively stiffsecant-bored piles and diaphragm walls are commonly used in cut-and-cover works to minimize the impact of ground movement on the adjacent structures and utilities.For excavations in stiffresidual soil deposits,the asso-ciated wall deflections and ground settlements are generally smaller than for excavations in soft soil deposits.However,if the residual soil permeability is high and the underlying rock is highlyfissured or fractured,substantial groundwater drawdown and associated seepage-induced settlement may occur.In this study,the excavation performance of four sites in residual soil deposits with maximum excavation depths between 20 and 24 m is presented.The maximum wall deflections were found to be relatively small compared to the significantly larger maximum ground settlements,owing to the extensive lowering of the groundwater table.In this paper,details of the subsurface conditions,excavation support system,field instrumentation,and observed excavation responses are presented,with particular focus on the large groundwater drawdown and associated ground settlement.Specific issues encountered during the excavation,as well as the effectiveness of various groundwater control measures,are discussed.The case studies will provide useful references and insights for future projects involving braced excavations in residual soil. 展开更多
关键词 Residual soil Braced excavation Wall deflection Ground settlements Groundwater drawdown Strut force
原文传递
Novel pipe-roof method for a super shallow buried and large-span metro underground station 被引量:3
17
作者 Bo Lu Jiachao Dong +6 位作者 Wen Zhao Xi Du Cheng Cheng Qian Bai Zhiguo Wang Mingcheng Zhao Jianyong Han 《Underground Space》 SCIE EI 2022年第1期134-150,共17页
To address the inadequacies of traditional pipe-roof methods,the steel support cutting pipe method(SSCP)—a novel pipe-roof method that improves construction security and underground space usage—is proposed.To furthe... To address the inadequacies of traditional pipe-roof methods,the steel support cutting pipe method(SSCP)—a novel pipe-roof method that improves construction security and underground space usage—is proposed.To further explore the applications of SSCP,its design scheme ought to be optimized.The failure mode and mechanical behaviors of the SSCP were investigated through laboratory experiments.Subsequently,a series of finite element models(FEMs)was established to study the deformation characteristics.Further,the parameters of the steel support of the proposed structure were optimized using fuzzy mathematics.The results indicated the ultimate bearing capacity to be 366.8 kN,and the specimen began to yield when the external load reached 70%of the ultimate value.The lon-gitudinal spacing of the steel supports,transverse steel support size,and vertical steel support size had significant effect on the vertical deformation of the steel support and the ground settlement.Finally,the optimal combination of steel supports for the SSCP structure was obtained. 展开更多
关键词 Steel support cutting pipe method Ground settlement Deformation characteristics Fuzzy mathematical theory Parameter optimization
原文传递
Observed response of maglev structure undercrossed by three shield tunnels in soft soil 被引量:1
18
作者 Dong-Mei Zhang Xiao-Chuang Xie +2 位作者 Zhong-Kai Huang Mao-Zhu Peng Hong-Xin Zhu 《Underground Space》 SCIE EI 2022年第4期636-661,共26页
This paper investigates the response of a maglev structure to three under-crossing tunnels of the Shanghai Metro Line 13.The minimal distance between the tunnels and pile groups of the maglev structure is only 1.5 m,t... This paper investigates the response of a maglev structure to three under-crossing tunnels of the Shanghai Metro Line 13.The minimal distance between the tunnels and pile groups of the maglev structure is only 1.5 m,thus the deformations of the maglev structure are strictly controlled for the serviceability of the operating maglev trains.The displacements of maglev piers and ground settlements during different tunnelling stages are monitored with an automatic measuring system.Based on the observed data,the ground settlement trough and displacements of maglev piers caused by the three shield tunnelling procedures are analyzed and discussed.The maximal ground settlement after the completion of the three tunnelling procedures is -43 mm.To operate the existing maglev safely,practical construction control methods are applied,including synchronous grouting,adjustment of the shield status,shield-advancing speed control,and stabilisation of the soil chamber pressure.With these countermeasures,the tunnel-induced deformations of maglev piers are well below the predefined thresholds.All piers heave under the strict deformation criterion of 2.0 mm.The crossing project is finally completed without interruptions of the maglev operations by monitoring the progress.The presented project is a valuable example for the evaluation of shield tunnelling effects on the adjacent maglev structures and establishes criteria for similar projects in the future. 展开更多
关键词 MAGLEV Multi-crossing Shield tunnelling Ground settlement Pier displacement
原文传递
Environmentally sustainable groundwater control during dewatering with barriers:A case study in Shanghai 被引量:1
19
作者 Zhi-Fei Xie Shui-Long Shen +1 位作者 Arul Arulrajah Suksun Horpibulsuk 《Underground Space》 SCIE EI 2021年第1期12-23,共12页
This paper presents a case study on groundwater control and environmental protection during a deep excavation of the foundation pit for the Liyang Road Station of Metro Line 10 in Shanghai.A three-dimensional finite e... This paper presents a case study on groundwater control and environmental protection during a deep excavation of the foundation pit for the Liyang Road Station of Metro Line 10 in Shanghai.A three-dimensional finite element simulation model was constructed to quantify the effects of a dewatering process on the environment around the excavation pit.To understand the decrease in the groundwater level around the foundation pit,the ground settlement and groundwater level were studied.During the excavation,environmental protection methods were used in the design of the optimal watering system to check its detrimental environmental effects.The effects of the diaphragm wall and horizontal barrier system were analyzed by varying their insertion depths and the resulting changes in the ground settlement and groundwater level were studied.It was found that increasing the insertion depth of the diaphragm wall reduced settlement near the excavation site but increased the construction costs.The diaphragm wall used in combination with a horizontal barrier was found to be effective in arresting the decrease in groundwater level and reducing settlement around the excavation site. 展开更多
关键词 DEWATERING Horizontal barrier Diaphragm wall Ground settlement DRAWDOWN Confined water
原文传递
Comparison of shallow tunneling method with pile and rib method for construction of subway station in soft ground
20
作者 Sina AMIRI Ali Naghi DEHGHAN 《Frontiers of Structural and Civil Engineering》 SCIE EI CSCD 2022年第6期704-717,共14页
In the present study,a comparison between the new shallow tunneling method(STM)and the traditional pile and rib method(PRM)was conducted to excavate and construct subway stations in the geological conditions of Tehran... In the present study,a comparison between the new shallow tunneling method(STM)and the traditional pile and rib method(PRM)was conducted to excavate and construct subway stations in the geological conditions of Tehran.First,by selecting Station Z6 located in the Tehran Subway Line 6 as a case study,the construction process was analyzed by PRM.The maximum ground settlement of 29.84 mm obtained from this method was related to the station axis,and it was within the allowable settlement limit of 30 mm.The acceptable agreement between the results of numerical modeling and instrumentation data indicated the confirmation and accuracy of the excavation and construction process of Station Z6 by PRM.In the next stage,based on the numerical model validated by instrumentation data,the value of the ground surface settlement was investigated during the station excavation and construction by STM.The results obtained from STM showed a significant reduction in the ground surface settlement compared to PRM.The maximum settlement obtained from STM was 6.09 mm as related to the front of the excavation face.Also,the sensitivity analysis results denoted that in addition to controlling the surface settlement by STM,it is possible to optimize some critical geometric parameters of the support system during the station excavation and construction. 展开更多
关键词 shallow tunneling method pile and rib method ground surface settlement subway station construction numerical modeling
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部