The Engineering Geological Map of the Sakha(Yakutia) Republic covers about 3 million kilometers which is one-fifth of the territory of Russia.The map displays ground and geocryological conditions and active faults.S...The Engineering Geological Map of the Sakha(Yakutia) Republic covers about 3 million kilometers which is one-fifth of the territory of Russia.The map displays ground and geocryological conditions and active faults.Seismic intensity,schemes of zoning by factors of engineering geological conditions,and the general scheme of engineering geological zoning of the Sakha(Yakutia) Republic or the SR(Y),are shown on the inset maps.The map is required to provide information for planning,construction and exploitation of engineering structures in the SR(Y).A distinguishing feature of the map is the indication of almost blanket distribution of the frozen ground class.Types of the frozen ground class are separated by lithology,while ground varieties are separated by temperature.Fresh and ultra-fresh suprapermafrost water is predominant within the territory.The compiled map indicates parts of the Arctic-Asian and Baikalo-Stanovoi planetary seismic belts that make engineering geological conditions more complicated.展开更多
This paper is dedicated to studying the following elliptic system of Hamiltonian type:■where N≥3,V,Q∈C(RN,R),V(x)is allowed to be sign-changing and inf Q>0,and F∈C1(R2,R)is superquadratic at both 0 and infinity...This paper is dedicated to studying the following elliptic system of Hamiltonian type:■where N≥3,V,Q∈C(RN,R),V(x)is allowed to be sign-changing and inf Q>0,and F∈C1(R2,R)is superquadratic at both 0 and infinity but subcritical.Instead of the reduction approach used in Ding et al.(2014),we develop a more direct approach—non-Nehari manifold approach to obtain stronger conclusions but under weaker assumptions than those in Ding et al.(2014).We can find anε0>0 which is determined by terms of N,V,Q and F,and then we prove the existence of a ground state solution of Nehari-Pankov type to the coupled system for allε∈(0,ε0].展开更多
We consider the semilinear Schrdinger equation-△u + V(x)u = f(x, u), x ∈ RN,u ∈ H 1(RN),where f is a superlinear, subcritical nonlinearity. We mainly study the case where V(x) = V0(x) + V1(x),V0∈ C(RN), V0(x) is 1...We consider the semilinear Schrdinger equation-△u + V(x)u = f(x, u), x ∈ RN,u ∈ H 1(RN),where f is a superlinear, subcritical nonlinearity. We mainly study the case where V(x) = V0(x) + V1(x),V0∈ C(RN), V0(x) is 1-periodic in each of x1, x2,..., x N and sup[σ(-△ + V0) ∩(-∞, 0)] < 0 < inf[σ(-△ +V0)∩(0, ∞)], V1∈ C(RN) and lim|x|→∞V1(x) = 0. Inspired by previous work of Li et al.(2006), Pankov(2005)and Szulkin and Weth(2009), we develop a more direct approach to generalize the main result of Szulkin and Weth(2009) by removing the "strictly increasing" condition in the Nehari type assumption on f(x, t)/|t|. Unlike the Nahari manifold method, the main idea of our approach lies on finding a minimizing Cerami sequence for the energy functional outside the Nehari-Pankov manifold N0 by using the diagonal method.展开更多
We consider the nonlinear difference equations of the form Lu=f(n,u),n∈Z,where L is a Jacobi operator given by(Lu)(n)=a(n)u(n+1)+a(n-1)u(n-1)+b(n)u(n) for n ∈Z,{a(n)} and {b(n)} are real val...We consider the nonlinear difference equations of the form Lu=f(n,u),n∈Z,where L is a Jacobi operator given by(Lu)(n)=a(n)u(n+1)+a(n-1)u(n-1)+b(n)u(n) for n ∈Z,{a(n)} and {b(n)} are real valued N-periodic sequences,and f(n,t) is superlinear on t.Inspired by previous work of Pankov[Discrete Contin.Dyn.Syst.,19,419-430(2007)]and Szulkin and Weth[J.Funct.Anal.,257,3802-3822(2009)],we develop a non-Nehari manifold method to find ground state solutions of Nehari-Pankov type under weaker conditions on f.Unlike the Nehari manifold method,the main idea of our approach lies on finding a minimizing Cerami sequence for the energy functional outside the Nehari-Pankov manifold by using the diagonal method.展开更多
文摘The Engineering Geological Map of the Sakha(Yakutia) Republic covers about 3 million kilometers which is one-fifth of the territory of Russia.The map displays ground and geocryological conditions and active faults.Seismic intensity,schemes of zoning by factors of engineering geological conditions,and the general scheme of engineering geological zoning of the Sakha(Yakutia) Republic or the SR(Y),are shown on the inset maps.The map is required to provide information for planning,construction and exploitation of engineering structures in the SR(Y).A distinguishing feature of the map is the indication of almost blanket distribution of the frozen ground class.Types of the frozen ground class are separated by lithology,while ground varieties are separated by temperature.Fresh and ultra-fresh suprapermafrost water is predominant within the territory.The compiled map indicates parts of the Arctic-Asian and Baikalo-Stanovoi planetary seismic belts that make engineering geological conditions more complicated.
基金supported by National Natural Science Foundation of China(Grant No.11171351)
文摘This paper is dedicated to studying the following elliptic system of Hamiltonian type:■where N≥3,V,Q∈C(RN,R),V(x)is allowed to be sign-changing and inf Q>0,and F∈C1(R2,R)is superquadratic at both 0 and infinity but subcritical.Instead of the reduction approach used in Ding et al.(2014),we develop a more direct approach—non-Nehari manifold approach to obtain stronger conclusions but under weaker assumptions than those in Ding et al.(2014).We can find anε0>0 which is determined by terms of N,V,Q and F,and then we prove the existence of a ground state solution of Nehari-Pankov type to the coupled system for allε∈(0,ε0].
基金supported by National Natural Science Foundation of China(Grant No.11171351)Specialized Research Fund for the Doctoral Program of Higher Education of China(Grant No.20120162110021)
文摘We consider the semilinear Schrdinger equation-△u + V(x)u = f(x, u), x ∈ RN,u ∈ H 1(RN),where f is a superlinear, subcritical nonlinearity. We mainly study the case where V(x) = V0(x) + V1(x),V0∈ C(RN), V0(x) is 1-periodic in each of x1, x2,..., x N and sup[σ(-△ + V0) ∩(-∞, 0)] < 0 < inf[σ(-△ +V0)∩(0, ∞)], V1∈ C(RN) and lim|x|→∞V1(x) = 0. Inspired by previous work of Li et al.(2006), Pankov(2005)and Szulkin and Weth(2009), we develop a more direct approach to generalize the main result of Szulkin and Weth(2009) by removing the "strictly increasing" condition in the Nehari type assumption on f(x, t)/|t|. Unlike the Nahari manifold method, the main idea of our approach lies on finding a minimizing Cerami sequence for the energy functional outside the Nehari-Pankov manifold N0 by using the diagonal method.
基金Supported by NSFC(Grant No.11571370)the Specialized Research Fund for the Doctoral Program of Higher Education(Grant No.20120162110021)of China
文摘We consider the nonlinear difference equations of the form Lu=f(n,u),n∈Z,where L is a Jacobi operator given by(Lu)(n)=a(n)u(n+1)+a(n-1)u(n-1)+b(n)u(n) for n ∈Z,{a(n)} and {b(n)} are real valued N-periodic sequences,and f(n,t) is superlinear on t.Inspired by previous work of Pankov[Discrete Contin.Dyn.Syst.,19,419-430(2007)]and Szulkin and Weth[J.Funct.Anal.,257,3802-3822(2009)],we develop a non-Nehari manifold method to find ground state solutions of Nehari-Pankov type under weaker conditions on f.Unlike the Nehari manifold method,the main idea of our approach lies on finding a minimizing Cerami sequence for the energy functional outside the Nehari-Pankov manifold by using the diagonal method.