Groundwater inverse modeling is a vital technique for estimating unmeasurable model parameters and enhancing numerical simulation accuracy.This paper comprehensively reviews the current advances and future prospects o...Groundwater inverse modeling is a vital technique for estimating unmeasurable model parameters and enhancing numerical simulation accuracy.This paper comprehensively reviews the current advances and future prospects of metaheuristic algorithm-based groundwater model parameter inversion.Initially,the simulation-optimization parameter estimation framework is introduced,which involves the integration of simulation models with metaheuristic algorithms.The subsequent sections explore the fundamental principles of four widely employed metaheuristic algorithms-genetic algorithm(GA),particle swarm optimization(PSO),simulated annealing(SA),and differential evolution(DE)-highlighting their recent applications in water resources research and related areas.Then,a solute transport model is designed to illustrate how to apply and evaluate these four optimization algorithms in addressing challenges related to model parameter inversion.Finally,three noteworthy directions are presented to address the common challenges among current studies,including balancing the diverse exploration and centralized exploitation within metaheuristic algorithms,local approxi-mate error of the surrogate model,and the curse of dimensionality in spatial variational heterogeneous pa-rameters.In summary,this review paper provides theoretical insights and practical guidance for further advancements in groundwater inverse modeling studies.展开更多
Identification of the location and intensity of groundwater pollution source contributes to the effect of pollution remediation,and is called groundwater contaminant source identification.This is a kind of typical gro...Identification of the location and intensity of groundwater pollution source contributes to the effect of pollution remediation,and is called groundwater contaminant source identification.This is a kind of typical groundwater inverse problem,and the solution is usually ill-posed.Especially considering the spatial variability of hydraulic conductivity field,the identification process is more challenging.In this paper,the solution framework of groundwater contaminant source identification is composed with groundwater pollutant transport model(MT3DMS)and a data assimilation method(Iterative local update ensemble smoother,ILUES).In addition,Karhunen-Loève expansion technique is adopted as a PCA method to realize dimension reduction.In practical problems,the geostatistical method is usually used to characterize the hydraulic conductivity field,and only the contaminant source information is inversely calculated in the identification process.In this study,the identification of contaminant source information under Kriging K-field is compared with simultaneous identification of source information and K-field.The results indicate that it is necessary to carry out simultaneous identification under heterogeneous site,and ILUES has good performance in solving high-dimensional parameter inversion problems.展开更多
When groundwater pollution occurs,to come up with an efficient remediation plan,it is particularly important to collect information of contaminant source(location and source strength)and hydraulic conductivity field o...When groundwater pollution occurs,to come up with an efficient remediation plan,it is particularly important to collect information of contaminant source(location and source strength)and hydraulic conductivity field of the site accurately and quickly.However,the information can not be obtained by direct observation,and can only be derived from limited measurement data.Data assimilation of observations such as head and concentration is often used to estimate parameters of contaminant source.As for hydraulic conductivity field,especially for complex non-Gaussian field,it can be directly estimated by geostatistics method based on limited hard data,while the accuracy is often not high.Better estimation of hydraulic conductivity can be achieved by solving inverse groundwater problem.Therefore,in this study,the multi-point geostatistics method Quick Sampling(QS)is proposed and introduced for the first time and combined with the iterative local updating ensemble smoother(ILUES)to develop a new data assimilation framework QS-ILUES.It helps to solve the contaminant source parameters and non-Gaussian hydraulic conductivity field simultaneously by assimilating hydraulic head and pollutant concentration data.While the pilot points are utilized to reduce the dimension of hydraulic conductivity field,the influence of pilot points’layout and the ensemble size of ILUES algorithm on the inverse simulation results are further explored.展开更多
Even though a large number of large-scale arch dams with height larger than 200 m have been built in the world, the transient groundwater flow behaviors and the seepage control effects in the dam foundations under dif...Even though a large number of large-scale arch dams with height larger than 200 m have been built in the world, the transient groundwater flow behaviors and the seepage control effects in the dam foundations under difficult geological conditions are rarely reported. This paper presents a case study on the transient groundwater flow behaviors in the rock foundation of Jinping I double-curvature arch dam, the world's highest dam of this type to date that has been completed. Taking into account the geological settings at the site, an inverse modeling technique utilizing the time series measurements of both hydraulic head and discharge was adopted to back-calculate the permeability of the foundation rocks,which effectively improves the uniqueness and reliability of the inverse modeling results. The transient seepage flow in the dam foundation during the reservoir impounding was then modeled with a parabolic variational inequality(PVI) method. The distribution of pore water pressure, the amount of leakage, and the performance of the seepage control system in the dam foundation during the entire impounding process were finally illustrated with the numerical results.展开更多
基金supported by the Fundamental Research Funds for the Central Universities(XJ2023005201)the National Natural Science Foundation of China(NSFC:U2267217,42141011,and 42002254).
文摘Groundwater inverse modeling is a vital technique for estimating unmeasurable model parameters and enhancing numerical simulation accuracy.This paper comprehensively reviews the current advances and future prospects of metaheuristic algorithm-based groundwater model parameter inversion.Initially,the simulation-optimization parameter estimation framework is introduced,which involves the integration of simulation models with metaheuristic algorithms.The subsequent sections explore the fundamental principles of four widely employed metaheuristic algorithms-genetic algorithm(GA),particle swarm optimization(PSO),simulated annealing(SA),and differential evolution(DE)-highlighting their recent applications in water resources research and related areas.Then,a solute transport model is designed to illustrate how to apply and evaluate these four optimization algorithms in addressing challenges related to model parameter inversion.Finally,three noteworthy directions are presented to address the common challenges among current studies,including balancing the diverse exploration and centralized exploitation within metaheuristic algorithms,local approxi-mate error of the surrogate model,and the curse of dimensionality in spatial variational heterogeneous pa-rameters.In summary,this review paper provides theoretical insights and practical guidance for further advancements in groundwater inverse modeling studies.
基金supported by the Fundamental Research Funds for the Central Universities(No.22120190013)National Natural Science Foundation of China(No.41807187)
文摘Identification of the location and intensity of groundwater pollution source contributes to the effect of pollution remediation,and is called groundwater contaminant source identification.This is a kind of typical groundwater inverse problem,and the solution is usually ill-posed.Especially considering the spatial variability of hydraulic conductivity field,the identification process is more challenging.In this paper,the solution framework of groundwater contaminant source identification is composed with groundwater pollutant transport model(MT3DMS)and a data assimilation method(Iterative local update ensemble smoother,ILUES).In addition,Karhunen-Loève expansion technique is adopted as a PCA method to realize dimension reduction.In practical problems,the geostatistical method is usually used to characterize the hydraulic conductivity field,and only the contaminant source information is inversely calculated in the identification process.In this study,the identification of contaminant source information under Kriging K-field is compared with simultaneous identification of source information and K-field.The results indicate that it is necessary to carry out simultaneous identification under heterogeneous site,and ILUES has good performance in solving high-dimensional parameter inversion problems.
基金This work was supported by the Belt and Road Special Foundation of the State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering(No.2019nkzd01)National Natural Science Foundation of China(42077176).
文摘When groundwater pollution occurs,to come up with an efficient remediation plan,it is particularly important to collect information of contaminant source(location and source strength)and hydraulic conductivity field of the site accurately and quickly.However,the information can not be obtained by direct observation,and can only be derived from limited measurement data.Data assimilation of observations such as head and concentration is often used to estimate parameters of contaminant source.As for hydraulic conductivity field,especially for complex non-Gaussian field,it can be directly estimated by geostatistics method based on limited hard data,while the accuracy is often not high.Better estimation of hydraulic conductivity can be achieved by solving inverse groundwater problem.Therefore,in this study,the multi-point geostatistics method Quick Sampling(QS)is proposed and introduced for the first time and combined with the iterative local updating ensemble smoother(ILUES)to develop a new data assimilation framework QS-ILUES.It helps to solve the contaminant source parameters and non-Gaussian hydraulic conductivity field simultaneously by assimilating hydraulic head and pollutant concentration data.While the pilot points are utilized to reduce the dimension of hydraulic conductivity field,the influence of pilot points’layout and the ensemble size of ILUES algorithm on the inverse simulation results are further explored.
基金financially supported through NSERC Discovery Grant(RGPIN/4994-2014)
文摘Even though a large number of large-scale arch dams with height larger than 200 m have been built in the world, the transient groundwater flow behaviors and the seepage control effects in the dam foundations under difficult geological conditions are rarely reported. This paper presents a case study on the transient groundwater flow behaviors in the rock foundation of Jinping I double-curvature arch dam, the world's highest dam of this type to date that has been completed. Taking into account the geological settings at the site, an inverse modeling technique utilizing the time series measurements of both hydraulic head and discharge was adopted to back-calculate the permeability of the foundation rocks,which effectively improves the uniqueness and reliability of the inverse modeling results. The transient seepage flow in the dam foundation during the reservoir impounding was then modeled with a parabolic variational inequality(PVI) method. The distribution of pore water pressure, the amount of leakage, and the performance of the seepage control system in the dam foundation during the entire impounding process were finally illustrated with the numerical results.