This study presents the development of a comprehensive three-dimensional groundwater flow model for the Erbil Basin utilizing the Groundwater Modeling System(GMS).The Erbil Basin,situated in the Kurdistan Region of Ir...This study presents the development of a comprehensive three-dimensional groundwater flow model for the Erbil Basin utilizing the Groundwater Modeling System(GMS).The Erbil Basin,situated in the Kurdistan Region of Iraq,is a vital water resource area facing increasing water demands and environ-mental challenges.The three-dimensional nature of the groundwater flow system is crucial for accurately understanding and managing water resources in the basin.The modeling process involved data collection,geological and hydrogeological characterization,conceptual model development,and numerical simulation using GMS software MODFLOW 2000 package.Various parameters such as hydraulic conductivity,recharge rates,and boundary conditions were integrated into the model to represent the complex hydrogeo-logical conditions of the basin.Model calibration was performed by comparing simulated groundwater levels with observed data from monitoring wells across the basin,using the automatic calibration method of automated Parameter Estimation(PEST).Pilot points were applied to adjust the hydraulic conductivity in the model area spatially.Sensitivity analysis was conducted to assess the influence of key parameters on model predictions and to identify areas of uncertainty.The developed three-dimensional groundwater flow model provides valuable insights into the dynamics of groundwater flow,recharge-discharge mechanisms,and potential impacts of future scenarios such as climate change and water resource management strategies.It serves as a useful tool for decision-makers,water resource managers,and researchers to evaluate differ-ent management scenarios and formulate sustainable groundwater management policies for the Erbil Basin.In conclusion,this study demonstrates the effectiveness of using GMS for developing three-dimensional groundwater flow models in complex hydrogeological settings like the Erbil Basin,contributing to improved understanding and management of groundwater resources in the region.展开更多
Water table configuration gives rise to hierarchically nested groundwater flow systems.However,there remains a lack of comprehensive understanding regarding the controlling factors of water table and its impact on flo...Water table configuration gives rise to hierarchically nested groundwater flow systems.However,there remains a lack of comprehensive understanding regarding the controlling factors of water table and its impact on flow systems.Moreover,it remains challenging to identify characteristics of water table space variation through limited groundwater observations at the regional scale.Based on two ideal two-dimensional cross-section analytical models,this study presents a simplified approach to preliminarily assess the nonlinear interactions between water table variation and three driving factors:Topography,geol-ogy and climate.Two criteria,C1 and C2,are utilized to address issues at different scales ranging from basin to local:(i)the influence of various factors on water table configuration;and(ii)the influence of water table on groundwater flow pattern.Then,the Ordos Plateau is taken as an example to explore the role of the water table in nested groundwater systems using the provided approach and criterion.The applica-tion of this approach in the Ordos Plateau demonstrates its appropriateness as a practical method for prelim-inarily determining the characteristics of water table configuration and its impact on flow systems.The study explores the mechanism influencing spatial variation in the water table and improves understanding of the interaction between topography,geology,and climate on groundwater flow patterns.展开更多
A karst groundwater system ranks among the most sensitive and vulnerable types of groundwater systems.Coal mining and tunnel excavation can greatly change the natural hydrogeological flow system,groundwater-dependent ...A karst groundwater system ranks among the most sensitive and vulnerable types of groundwater systems.Coal mining and tunnel excavation can greatly change the natural hydrogeological flow system,groundwater-dependent vegetation,soil,as well as hydrology of surface water systems.Abandoned coal mine caves and proposed highway tunnels may have significant influences on groundwater systems.This study employs MODFLOW,a 3D finite-difference groundwater model software,to simulate the groundwater system's response to coal mining and tunnel excavation impact in Zhongliang Mountain,Chongqing,from 1948 to 2035.The results show a regional decline in groundwater levels within the study area following mining and tunnel construction.The groundwater flow system in the study area evolves from the Jialing River groundwater flow system to encompass the Jialing River,Moxinpo highway tunnel,Moxinpo,and the Liujiagou coal mine cave groundwater flow systems between 1948 and 2025.With the completion of tunnel construction,the groundwater level at the top of the tunnel is gradually restored to the water level in the natural state.The model also predicts groundwater level variations between 2025 and 2035.The groundwater level will rise further initially,however,it may take about 10 years for the system to stabilize and reach a new equilibrium.In light of these findings,it is advised that changes in groundwater flow systems caused by tunnel construction should be modeled prior to the practical construction.This approach is crucial for evaluating potential engineering and environmental implications.展开更多
In the past decades,physical modeling has been widely used in hydrogeology for teaching,studying and exhibition purposes.Most of these models are used to illustrate hydrogeological profiles,but few can depict three-di...In the past decades,physical modeling has been widely used in hydrogeology for teaching,studying and exhibition purposes.Most of these models are used to illustrate hydrogeological profiles,but few can depict three-dimensional groundwater flows,making it impossible to validate groundwater flows simulated by numerical methods with physical modeling.展开更多
Hydraulic fracturing is an effective technology for hydrocarbon extraction from unconventional shale and tight gas reservoirs.A potential risk of hydraulic fracturing is the upward migration of stray gas from the deep...Hydraulic fracturing is an effective technology for hydrocarbon extraction from unconventional shale and tight gas reservoirs.A potential risk of hydraulic fracturing is the upward migration of stray gas from the deep subsurface to shallow aquifers.The stray gas can dissolve in groundwater leading to chemical and biological reactions,which could negatively affect groundwater quality and contribute to atmospheric emissions.The knowledge oflight hydrocarbon solubility in the aqueous environment is essential for the numerical modelling offlow and transport in the subsurface.Herein,we compiled a database containing 2129experimental data of methane,ethane,and propane solubility in pure water and various electrolyte solutions over wide ranges of operating temperature and pressure.Two machine learning algorithms,namely regression tree(RT)and boosted regression tree(BRT)tuned with a Bayesian optimization algorithm(BO)were employed to determine the solubility of gases.The predictions were compared with the experimental data as well as four well-established thermodynamic models.Our analysis shows that the BRT-BO is sufficiently accurate,and the predicted values agree well with those obtained from the thermodynamic models.The coefficient of determination(R2)between experimental and predicted values is 0.99 and the mean squared error(MSE)is 9.97×10^(-8).The leverage statistical approach further confirmed the validity of the model developed.展开更多
Groundwater is an important source of drinking water.Groundwater pollution severely endangers drinking water safety and sustainable social development.In the case of groundwater pollution,the top priority is to identi...Groundwater is an important source of drinking water.Groundwater pollution severely endangers drinking water safety and sustainable social development.In the case of groundwater pollution,the top priority is to identify pollution sources,and accurate information on pollution sources is the premise of efficient remediation.Then,an appropriate pollution remediation scheme should be developed according to information on pollution sources,site conditions,and economic costs.The methods for identifying pollution sources mainly include geophysical exploration,geochemistry,isotopic tracing,and numerical modeling.Among these identification methods,only the numerical modeling can recognize various information on pollution sources,while other methods can only identify a certain aspect of pollution sources.The remediation technologies of groundwater can be divided into in-situ and ex-situ remediation technologies according to the remediation location.The in-situ remediation technologies enjoy low costs and a wide remediation range,but their remediation performance is prone to be affected by environmental conditions and cause secondary pollution.The ex-situ remediation technologies boast high remediation efficiency,high processing capacity,and high treatment concentration but suffer high costs.Different methods for pollution source identification and remediation technologies are applicable to different conditions.To achieve the expected identification and remediation results,it is feasible to combine several methods and technologies according to the actual hydrogeological conditions of contaminated sites and the nature of pollutants.Additionally,detailed knowledge about the hydrogeological conditions and stratigraphic structure of the contaminated site is the basis of all work regardless of the adopted identification methods or remediation technologies.展开更多
Climate change and increasing anthropogenic activities,such as over-exploitation of groundwater,are exerting unavoidable stress on groundwater resources.This study investigated the spatio-temporal variation of depth t...Climate change and increasing anthropogenic activities,such as over-exploitation of groundwater,are exerting unavoidable stress on groundwater resources.This study investigated the spatio-temporal variation of depth to groundwater level(DGWL)and the impacts of climatic(precipitation,maximum temperature,and minimum temperature)and anthropogenic(gross district product(GDP),population,and net irrigated area(NIA))variables on DGWL during 1994-2020.The study considered DGWL in 113 observation wells and piezometers located in arid western plains(Barmer and Jodhpur districts)and semi-arid eastern plains(Jaipur,Ajmer,Dausa,and Tonk districts)of Rajasthan State,India.Statistical methods were employed to examine the annual and seasonal patterns of DGWL,and the generalized additive model(GAM)was used to determine the impacts of climatic and anthropogenic variables on DGWL.During 1994-2020,except for Barmer District,where the mean annual DGWL was almost constant(around 26.50 m),all other districts exhibited increase in DGWL,with Ajmer District experiencing the most increase.The results also revealed that 36 observation wells and piezometers showed a statistically significant annual increasing trend in DGWL and 34 observation wells and piezometers exhibited a statistically significant decreasing trend in DGWL.Similarly,32 observation wells and piezometers showed an statistically significant increasing trend and 37 observation wells and piezometers showed a statistically significant decreasing trend in winter;33 observation wells and piezometers indicated a statistically significant increasing trend and 34 had a statistically significant decreasing trend in post-monsoon;35 observation wells and piezometers exhibited a statistically significant increasing trend and 32 observation wells and piezometers showed a statistically significant decreasing trend in pre-monsoon;and 36 observation wells and piezometers reflected a statistically significant increasing trend and 30 observation wells and piezometers reflected a statistically significant decreasing trend in monsoon.Interestingly,most of the observation wells and piezometers with increasing trends of DGWL were located in Dausa and Jaipur districts.Furthermore,the GAM analysis revealed that climatic variables,such as precipitation,significantly affected DGWL in Barmer District,and DGWL in all other districts was influenced by anthropogenic variables,including GDP,NIA,and population.As a result,stringent regulations should be implemented to curb excessive groundwater extraction,manage agricultural water demand,initiate proactive aquifer recharge programs,and strengthen sustainable management in these water-scarce regions.展开更多
The continuous enrichment of heavy metals in soils has caused potential harm to groundwater.Quantitative methods to evaluate the harm of heavy metals in soil to groundwater are lacked in previous studies.Based on the ...The continuous enrichment of heavy metals in soils has caused potential harm to groundwater.Quantitative methods to evaluate the harm of heavy metals in soil to groundwater are lacked in previous studies.Based on the theory of groundwater circulation and solid-liquid equilibrium,a simple and easy-touse flux model of soil heavy metals migrating to groundwater is constructed.Based on groundwater environmental capacity,an innovative method for evaluating the harm of heavy metals in soil to groundwater is proposed,which has been applied in Hunchun Basin,Jilin Province,China.The results show that the fluxes of soil heavy metals into groundwater in the study area are Zn,Cu,As,Pb,Cd,Ni,and Hg in descending order.The content of heavy metals in groundwater(As,Hg,Cu,Pb,Zn,Ni,and Cd)in most areas has not risen to the threshold of environmental capacity within 10 years.The harm levels of soil heavy metals to groundwater in the most townships soils are at the moderate level or below.This evaluation method can quantify the flux of soil heavy metals into groundwater simply and quickly,determine the residual capacity of groundwater to heavy metals,evaluate the harm level of soil heavy metals to groundwater,provide support for relevant departments to carry out environmental protection of soil and groundwater,and provide a reference to carry out similar studies for related scholars.展开更多
In this study,the analytical data set of 26 groundwater samples from the alluvial aquifer of Boumerzoug-E1 khroub valley has been processed simultaneously with Multivariate analysis,geostatistical modeling,WQI,and geo...In this study,the analytical data set of 26 groundwater samples from the alluvial aquifer of Boumerzoug-E1 khroub valley has been processed simultaneously with Multivariate analysis,geostatistical modeling,WQI,and geochemical modeling.Cluster analysis identified three main water types based on the major ion contents,where mineralization increased from group 1 to group 3.These groups were confirmed by FA/PCA,which demonstrated that groundwater quality is influenced by geochemical processes(water-rock interaction)and human practice(irrigation).The exponential semivariogram model WQI.Groundwater chemistry has a strong spatial structure for Mg,Na,Cl,and NO3,and a moderate spatial structure for EC,Ca,K,HCO3,and SO4.Water quality maps generated using ordinary Kriging are consistent with the HCA and PCA results.All water groups are supersaturated with respect to carbonate minerals,and dissolution of kaolinite and Ca-smectite is one of the processes responsible for hydrochemical evolution in the area.展开更多
The purpose of this paper is to examine the evolution mechanisms of a hydrochemical field and to promote its benefits to the living standards of local people and to the local economy in the southern plain area of Peng...The purpose of this paper is to examine the evolution mechanisms of a hydrochemical field and to promote its benefits to the living standards of local people and to the local economy in the southern plain area of Pengyang County, in Ningxia, China. Based on understanding of the hydrogeological conditions in Pengyang County, the chemical evolution characteristics of groundwater in the plain area were analyzed. PHREEQC geochemical modeling software was used to perform hydrochemical modeling of water-rock interaction and to quantitatively analyze the evolution processes and the formation mechanisms of the local groundwater. Geochemical modeling was performed for two groundwater paths. The results showed that, along path 1, Na+ adsorption played the leading role in the precipitation process and its amount was the largest, up to 6.08 mmol/L; cation exchange was significant along path 1, while along simulated path 2, albite accounted for the largest amount of dissolution, reaching 9.06 mmol/L, and the cation exchange was not significant. According to the modeling results, along the groundwater flow path, calcite and dolomite showed oversaturated status with a precipitation trend, while the fluorite and gypsum throughout the simulated path were not saturated and showed a dissolution trend. The total dissolved solids (TDS) increased and water quality worsened along the flow path. The dissolution reactions of albite, CO2, and halite, the exchange adsorption reaction of Na+, and the precipitation of sodium montmorillonite and calcite were the primary hydrogeochemical reactions, resulting in changes of hydrochemical ingredients.展开更多
PCG2 (Preconditioned Conjugate-Gradient Method 2), the most popular mothod used in groundwater field, was used to solve the distributed model of large-scale groundwater system. Its principle and effect was analyzed ...PCG2 (Preconditioned Conjugate-Gradient Method 2), the most popular mothod used in groundwater field, was used to solve the distributed model of large-scale groundwater system. Its principle and effect was analyzed mathematically, and verified by some specific examples. Numerical results acquired by PCG2 are accurate, it demonstrates that PCG2 is effective on methodology itself and man-ralated operation. So PCG2 is worthy of popularizing in the area of groundwater system for numerical analysis.展开更多
文摘This study presents the development of a comprehensive three-dimensional groundwater flow model for the Erbil Basin utilizing the Groundwater Modeling System(GMS).The Erbil Basin,situated in the Kurdistan Region of Iraq,is a vital water resource area facing increasing water demands and environ-mental challenges.The three-dimensional nature of the groundwater flow system is crucial for accurately understanding and managing water resources in the basin.The modeling process involved data collection,geological and hydrogeological characterization,conceptual model development,and numerical simulation using GMS software MODFLOW 2000 package.Various parameters such as hydraulic conductivity,recharge rates,and boundary conditions were integrated into the model to represent the complex hydrogeo-logical conditions of the basin.Model calibration was performed by comparing simulated groundwater levels with observed data from monitoring wells across the basin,using the automatic calibration method of automated Parameter Estimation(PEST).Pilot points were applied to adjust the hydraulic conductivity in the model area spatially.Sensitivity analysis was conducted to assess the influence of key parameters on model predictions and to identify areas of uncertainty.The developed three-dimensional groundwater flow model provides valuable insights into the dynamics of groundwater flow,recharge-discharge mechanisms,and potential impacts of future scenarios such as climate change and water resource management strategies.It serves as a useful tool for decision-makers,water resource managers,and researchers to evaluate differ-ent management scenarios and formulate sustainable groundwater management policies for the Erbil Basin.In conclusion,this study demonstrates the effectiveness of using GMS for developing three-dimensional groundwater flow models in complex hydrogeological settings like the Erbil Basin,contributing to improved understanding and management of groundwater resources in the region.
基金funded by the Inner Mongolia Autonomous Region Science and Technology Program(2021GG0198)Shaanxi Science,Technology Department(No.2021ZDLSF05-01,2022SF-327)China Geological Survey(DD20190351,DD20221751).
文摘Water table configuration gives rise to hierarchically nested groundwater flow systems.However,there remains a lack of comprehensive understanding regarding the controlling factors of water table and its impact on flow systems.Moreover,it remains challenging to identify characteristics of water table space variation through limited groundwater observations at the regional scale.Based on two ideal two-dimensional cross-section analytical models,this study presents a simplified approach to preliminarily assess the nonlinear interactions between water table variation and three driving factors:Topography,geol-ogy and climate.Two criteria,C1 and C2,are utilized to address issues at different scales ranging from basin to local:(i)the influence of various factors on water table configuration;and(ii)the influence of water table on groundwater flow pattern.Then,the Ordos Plateau is taken as an example to explore the role of the water table in nested groundwater systems using the provided approach and criterion.The applica-tion of this approach in the Ordos Plateau demonstrates its appropriateness as a practical method for prelim-inarily determining the characteristics of water table configuration and its impact on flow systems.The study explores the mechanism influencing spatial variation in the water table and improves understanding of the interaction between topography,geology,and climate on groundwater flow patterns.
基金supported by the State Key Laboratory of Geohazard Prevention and Geoenvironment Protection Independent Research Project(SKLGP2018Z018)the Research Project of China Railway Eryuan Engineering Group Co.,Ltd.(KDNQ203005).
文摘A karst groundwater system ranks among the most sensitive and vulnerable types of groundwater systems.Coal mining and tunnel excavation can greatly change the natural hydrogeological flow system,groundwater-dependent vegetation,soil,as well as hydrology of surface water systems.Abandoned coal mine caves and proposed highway tunnels may have significant influences on groundwater systems.This study employs MODFLOW,a 3D finite-difference groundwater model software,to simulate the groundwater system's response to coal mining and tunnel excavation impact in Zhongliang Mountain,Chongqing,from 1948 to 2035.The results show a regional decline in groundwater levels within the study area following mining and tunnel construction.The groundwater flow system in the study area evolves from the Jialing River groundwater flow system to encompass the Jialing River,Moxinpo highway tunnel,Moxinpo,and the Liujiagou coal mine cave groundwater flow systems between 1948 and 2025.With the completion of tunnel construction,the groundwater level at the top of the tunnel is gradually restored to the water level in the natural state.The model also predicts groundwater level variations between 2025 and 2035.The groundwater level will rise further initially,however,it may take about 10 years for the system to stabilize and reach a new equilibrium.In light of these findings,it is advised that changes in groundwater flow systems caused by tunnel construction should be modeled prior to the practical construction.This approach is crucial for evaluating potential engineering and environmental implications.
基金supported by the State Key Program of National Natural Science of China(Grant No.41130637)
文摘In the past decades,physical modeling has been widely used in hydrogeology for teaching,studying and exhibition purposes.Most of these models are used to illustrate hydrogeological profiles,but few can depict three-dimensional groundwater flows,making it impossible to validate groundwater flows simulated by numerical methods with physical modeling.
文摘Hydraulic fracturing is an effective technology for hydrocarbon extraction from unconventional shale and tight gas reservoirs.A potential risk of hydraulic fracturing is the upward migration of stray gas from the deep subsurface to shallow aquifers.The stray gas can dissolve in groundwater leading to chemical and biological reactions,which could negatively affect groundwater quality and contribute to atmospheric emissions.The knowledge oflight hydrocarbon solubility in the aqueous environment is essential for the numerical modelling offlow and transport in the subsurface.Herein,we compiled a database containing 2129experimental data of methane,ethane,and propane solubility in pure water and various electrolyte solutions over wide ranges of operating temperature and pressure.Two machine learning algorithms,namely regression tree(RT)and boosted regression tree(BRT)tuned with a Bayesian optimization algorithm(BO)were employed to determine the solubility of gases.The predictions were compared with the experimental data as well as four well-established thermodynamic models.Our analysis shows that the BRT-BO is sufficiently accurate,and the predicted values agree well with those obtained from the thermodynamic models.The coefficient of determination(R2)between experimental and predicted values is 0.99 and the mean squared error(MSE)is 9.97×10^(-8).The leverage statistical approach further confirmed the validity of the model developed.
基金funded by the National Natural Science Foundation of China(41907175)the Open Fund of Key Laboratory(WSRCR-2023-01)the project of the China Geological Survey(DD20230459).
文摘Groundwater is an important source of drinking water.Groundwater pollution severely endangers drinking water safety and sustainable social development.In the case of groundwater pollution,the top priority is to identify pollution sources,and accurate information on pollution sources is the premise of efficient remediation.Then,an appropriate pollution remediation scheme should be developed according to information on pollution sources,site conditions,and economic costs.The methods for identifying pollution sources mainly include geophysical exploration,geochemistry,isotopic tracing,and numerical modeling.Among these identification methods,only the numerical modeling can recognize various information on pollution sources,while other methods can only identify a certain aspect of pollution sources.The remediation technologies of groundwater can be divided into in-situ and ex-situ remediation technologies according to the remediation location.The in-situ remediation technologies enjoy low costs and a wide remediation range,but their remediation performance is prone to be affected by environmental conditions and cause secondary pollution.The ex-situ remediation technologies boast high remediation efficiency,high processing capacity,and high treatment concentration but suffer high costs.Different methods for pollution source identification and remediation technologies are applicable to different conditions.To achieve the expected identification and remediation results,it is feasible to combine several methods and technologies according to the actual hydrogeological conditions of contaminated sites and the nature of pollutants.Additionally,detailed knowledge about the hydrogeological conditions and stratigraphic structure of the contaminated site is the basis of all work regardless of the adopted identification methods or remediation technologies.
文摘Climate change and increasing anthropogenic activities,such as over-exploitation of groundwater,are exerting unavoidable stress on groundwater resources.This study investigated the spatio-temporal variation of depth to groundwater level(DGWL)and the impacts of climatic(precipitation,maximum temperature,and minimum temperature)and anthropogenic(gross district product(GDP),population,and net irrigated area(NIA))variables on DGWL during 1994-2020.The study considered DGWL in 113 observation wells and piezometers located in arid western plains(Barmer and Jodhpur districts)and semi-arid eastern plains(Jaipur,Ajmer,Dausa,and Tonk districts)of Rajasthan State,India.Statistical methods were employed to examine the annual and seasonal patterns of DGWL,and the generalized additive model(GAM)was used to determine the impacts of climatic and anthropogenic variables on DGWL.During 1994-2020,except for Barmer District,where the mean annual DGWL was almost constant(around 26.50 m),all other districts exhibited increase in DGWL,with Ajmer District experiencing the most increase.The results also revealed that 36 observation wells and piezometers showed a statistically significant annual increasing trend in DGWL and 34 observation wells and piezometers exhibited a statistically significant decreasing trend in DGWL.Similarly,32 observation wells and piezometers showed an statistically significant increasing trend and 37 observation wells and piezometers showed a statistically significant decreasing trend in winter;33 observation wells and piezometers indicated a statistically significant increasing trend and 34 had a statistically significant decreasing trend in post-monsoon;35 observation wells and piezometers exhibited a statistically significant increasing trend and 32 observation wells and piezometers showed a statistically significant decreasing trend in pre-monsoon;and 36 observation wells and piezometers reflected a statistically significant increasing trend and 30 observation wells and piezometers reflected a statistically significant decreasing trend in monsoon.Interestingly,most of the observation wells and piezometers with increasing trends of DGWL were located in Dausa and Jaipur districts.Furthermore,the GAM analysis revealed that climatic variables,such as precipitation,significantly affected DGWL in Barmer District,and DGWL in all other districts was influenced by anthropogenic variables,including GDP,NIA,and population.As a result,stringent regulations should be implemented to curb excessive groundwater extraction,manage agricultural water demand,initiate proactive aquifer recharge programs,and strengthen sustainable management in these water-scarce regions.
基金supported by the project of China Geology Survey(12120115032801,DD20190340)。
文摘The continuous enrichment of heavy metals in soils has caused potential harm to groundwater.Quantitative methods to evaluate the harm of heavy metals in soil to groundwater are lacked in previous studies.Based on the theory of groundwater circulation and solid-liquid equilibrium,a simple and easy-touse flux model of soil heavy metals migrating to groundwater is constructed.Based on groundwater environmental capacity,an innovative method for evaluating the harm of heavy metals in soil to groundwater is proposed,which has been applied in Hunchun Basin,Jilin Province,China.The results show that the fluxes of soil heavy metals into groundwater in the study area are Zn,Cu,As,Pb,Cd,Ni,and Hg in descending order.The content of heavy metals in groundwater(As,Hg,Cu,Pb,Zn,Ni,and Cd)in most areas has not risen to the threshold of environmental capacity within 10 years.The harm levels of soil heavy metals to groundwater in the most townships soils are at the moderate level or below.This evaluation method can quantify the flux of soil heavy metals into groundwater simply and quickly,determine the residual capacity of groundwater to heavy metals,evaluate the harm level of soil heavy metals to groundwater,provide support for relevant departments to carry out environmental protection of soil and groundwater,and provide a reference to carry out similar studies for related scholars.
文摘In this study,the analytical data set of 26 groundwater samples from the alluvial aquifer of Boumerzoug-E1 khroub valley has been processed simultaneously with Multivariate analysis,geostatistical modeling,WQI,and geochemical modeling.Cluster analysis identified three main water types based on the major ion contents,where mineralization increased from group 1 to group 3.These groups were confirmed by FA/PCA,which demonstrated that groundwater quality is influenced by geochemical processes(water-rock interaction)and human practice(irrigation).The exponential semivariogram model WQI.Groundwater chemistry has a strong spatial structure for Mg,Na,Cl,and NO3,and a moderate spatial structure for EC,Ca,K,HCO3,and SO4.Water quality maps generated using ordinary Kriging are consistent with the HCA and PCA results.All water groups are supersaturated with respect to carbonate minerals,and dissolution of kaolinite and Ca-smectite is one of the processes responsible for hydrochemical evolution in the area.
基金supported by the National Natural Science Foundation of China (Grant No.40772160)the Research on Drinking Water Environment and Endemic in Villages and Small Towns in New Socialist Countryside Project (Grant No.010)supported by the Ningxia Land and Resources Department,and the Program of Introducing Talents of Discipline to Universities (111 Project) (Grant No.B08039)
文摘The purpose of this paper is to examine the evolution mechanisms of a hydrochemical field and to promote its benefits to the living standards of local people and to the local economy in the southern plain area of Pengyang County, in Ningxia, China. Based on understanding of the hydrogeological conditions in Pengyang County, the chemical evolution characteristics of groundwater in the plain area were analyzed. PHREEQC geochemical modeling software was used to perform hydrochemical modeling of water-rock interaction and to quantitatively analyze the evolution processes and the formation mechanisms of the local groundwater. Geochemical modeling was performed for two groundwater paths. The results showed that, along path 1, Na+ adsorption played the leading role in the precipitation process and its amount was the largest, up to 6.08 mmol/L; cation exchange was significant along path 1, while along simulated path 2, albite accounted for the largest amount of dissolution, reaching 9.06 mmol/L, and the cation exchange was not significant. According to the modeling results, along the groundwater flow path, calcite and dolomite showed oversaturated status with a precipitation trend, while the fluorite and gypsum throughout the simulated path were not saturated and showed a dissolution trend. The total dissolved solids (TDS) increased and water quality worsened along the flow path. The dissolution reactions of albite, CO2, and halite, the exchange adsorption reaction of Na+, and the precipitation of sodium montmorillonite and calcite were the primary hydrogeochemical reactions, resulting in changes of hydrochemical ingredients.
基金Supported by National Natural Science Foundation (30370825)
文摘PCG2 (Preconditioned Conjugate-Gradient Method 2), the most popular mothod used in groundwater field, was used to solve the distributed model of large-scale groundwater system. Its principle and effect was analyzed mathematically, and verified by some specific examples. Numerical results acquired by PCG2 are accurate, it demonstrates that PCG2 is effective on methodology itself and man-ralated operation. So PCG2 is worthy of popularizing in the area of groundwater system for numerical analysis.