Monitoring of regional groundwater levels provides important information for quantifying groundwater depletion and assessing impacts on the environment. Historically, groundwater level monitoring wells in Beijing Plai...Monitoring of regional groundwater levels provides important information for quantifying groundwater depletion and assessing impacts on the environment. Historically, groundwater level monitoring wells in Beijing Plain, China, were installed for assessing groundwater resources and for monitoring the cone of depression. Monitoring wells are clustered around well fields and urban areas. There is urgent need to upgrade the existing monitoring wells to a regional groundwater level monitoring network to acquire information for integrated water resources management. A new method was proposed for designing a regional groundwater level monitoring network. The method is based on groundwater regime zone mapping. Groundwater regime zone map delineates distinct areas of possible different groundwater level variations and is useful for locating groundwater monitoring wells. This method was applied to Beijing Plain to upgrade a regional groundwater level monitoring network.展开更多
The Luanhe River Delta is located in the center of the Circum-Bohai Sea Economic Zone.It enjoys rapid economic and social development while suffering relatively water scarcity.The overexploitation of groundwater in th...The Luanhe River Delta is located in the center of the Circum-Bohai Sea Economic Zone.It enjoys rapid economic and social development while suffering relatively water scarcity.The overexploitation of groundwater in the Luanhe River Delta in recent years has caused the continuous drop of groundwater level and serious environmental and geological problems.This study systematically analyzes the evolution characteristics of the population,economy,and groundwater exploitation in the Luanhe River Delta and summarizes the change patterns of the groundwater flow regime in different aquifers in the Luanhe River Delta according to previous water resource assessment data as well as the latest groundwater survey results.Through comparison of major source/sink terms and groundwater resources,the study reveals the impacts of human activities on the groundwater resources and ecological environment in the study area over the past 30 years from 1990 to 2020.The results are as follows.The average annual drop rate of shallow groundwater and the deep groundwater in the centers of depression cones is 0.4 m and 1.64 m,respectively in the Luanhe River Delta in the past 30 years.The depression cones of shallow and deep groundwater in the study area cover an area of 545.32 km^(2)and 548.79 km^(2),respectively,accounting for more than 10%of the total area of the Luanhe River Delta.Overexploitation of groundwater has further aggravated land subsidence.As a result,two large-scale subsidence centers have formed,with a maximum subsidence rate of up to 120 mm/a.The drop of groundwater level has induced some ecological problems in the Luanhe River Delta area,such as the zero flow and water quality deterioration of rivers and continuous shrinkage of natural wetlands and water.Meanwhile,the proportion of natural wetland area to the total wetland area has been decreased from 99%to 8%and the water area from 1776 km^(2)to 263 km^(2).These results will provide data for groundwater overexploitation control,land subsidence prevention,and ecological restoration in plains and provide services for water resources management and national land space planning.展开更多
Regime of groundwater level is a comprehensive reflection of the hydrogeological environment from the perspective of groundwater. Based on the analysis of the water-level change of 65 groundwater monitoring points fro...Regime of groundwater level is a comprehensive reflection of the hydrogeological environment from the perspective of groundwater. Based on the analysis of the water-level change of 65 groundwater monitoring points from 1987 to 1990, it is found that intermittent cones of depression came into being due to groundwater exploitation in Guilin during the observation period. The buried depth of groundwater in the drawdown cones, the annual variation of water level and specific yield have higher values. Improvement has been made to the formula of infiltration coefficient of precipitation. By using the precipitation response data recorded at every 15 minutes for water level of No. 9 borehole which is near Zengpiyan Cave, the specific yield of phreatic variation zone is indirectly calculated by using the modified formula. The results are range from 0.012 to 0.462 and the spatial distribution of specific yield is ascertained. These make up the deficiency that empirical values cannot be categorized based on the actual conditions. What’s more, the widely used Aviriyanover’s empirical formula is poorly applicable to karst area. This is due to its strict requirement for outside conditions, such as shallow buried depth, homogeneous aquifer medium and small hydraulic gradient.展开更多
文摘Monitoring of regional groundwater levels provides important information for quantifying groundwater depletion and assessing impacts on the environment. Historically, groundwater level monitoring wells in Beijing Plain, China, were installed for assessing groundwater resources and for monitoring the cone of depression. Monitoring wells are clustered around well fields and urban areas. There is urgent need to upgrade the existing monitoring wells to a regional groundwater level monitoring network to acquire information for integrated water resources management. A new method was proposed for designing a regional groundwater level monitoring network. The method is based on groundwater regime zone mapping. Groundwater regime zone map delineates distinct areas of possible different groundwater level variations and is useful for locating groundwater monitoring wells. This method was applied to Beijing Plain to upgrade a regional groundwater level monitoring network.
基金This research is jointly funded by the“Project of Hydrogeological survey of Luanhe River Basin”of China Geological Survey(No.DD20190338)General Project of National Natural Science Foundation of China(No.41972196)+1 种基金Youth Fund of the National Natural Science Foundation of China(No.41907149)China Postdoctoral Foundation(No.2018M631732).
文摘The Luanhe River Delta is located in the center of the Circum-Bohai Sea Economic Zone.It enjoys rapid economic and social development while suffering relatively water scarcity.The overexploitation of groundwater in the Luanhe River Delta in recent years has caused the continuous drop of groundwater level and serious environmental and geological problems.This study systematically analyzes the evolution characteristics of the population,economy,and groundwater exploitation in the Luanhe River Delta and summarizes the change patterns of the groundwater flow regime in different aquifers in the Luanhe River Delta according to previous water resource assessment data as well as the latest groundwater survey results.Through comparison of major source/sink terms and groundwater resources,the study reveals the impacts of human activities on the groundwater resources and ecological environment in the study area over the past 30 years from 1990 to 2020.The results are as follows.The average annual drop rate of shallow groundwater and the deep groundwater in the centers of depression cones is 0.4 m and 1.64 m,respectively in the Luanhe River Delta in the past 30 years.The depression cones of shallow and deep groundwater in the study area cover an area of 545.32 km^(2)and 548.79 km^(2),respectively,accounting for more than 10%of the total area of the Luanhe River Delta.Overexploitation of groundwater has further aggravated land subsidence.As a result,two large-scale subsidence centers have formed,with a maximum subsidence rate of up to 120 mm/a.The drop of groundwater level has induced some ecological problems in the Luanhe River Delta area,such as the zero flow and water quality deterioration of rivers and continuous shrinkage of natural wetlands and water.Meanwhile,the proportion of natural wetland area to the total wetland area has been decreased from 99%to 8%and the water area from 1776 km^(2)to 263 km^(2).These results will provide data for groundwater overexploitation control,land subsidence prevention,and ecological restoration in plains and provide services for water resources management and national land space planning.
基金supported by National Natural Science Foundation of China(No.41172231)
文摘Regime of groundwater level is a comprehensive reflection of the hydrogeological environment from the perspective of groundwater. Based on the analysis of the water-level change of 65 groundwater monitoring points from 1987 to 1990, it is found that intermittent cones of depression came into being due to groundwater exploitation in Guilin during the observation period. The buried depth of groundwater in the drawdown cones, the annual variation of water level and specific yield have higher values. Improvement has been made to the formula of infiltration coefficient of precipitation. By using the precipitation response data recorded at every 15 minutes for water level of No. 9 borehole which is near Zengpiyan Cave, the specific yield of phreatic variation zone is indirectly calculated by using the modified formula. The results are range from 0.012 to 0.462 and the spatial distribution of specific yield is ascertained. These make up the deficiency that empirical values cannot be categorized based on the actual conditions. What’s more, the widely used Aviriyanover’s empirical formula is poorly applicable to karst area. This is due to its strict requirement for outside conditions, such as shallow buried depth, homogeneous aquifer medium and small hydraulic gradient.