期刊文献+
共找到23,448篇文章
< 1 2 250 >
每页显示 20 50 100
Application of the improved dung beetle optimizer,muti-head attention and hybrid deep learning algorithms to groundwater depth prediction in the Ningxia area,China
1
作者 Jiarui Cai Bo Sun +5 位作者 Huijun Wang Yi Zheng Siyu Zhou Huixin Li Yanyan Huang Peishu Zong 《Atmospheric and Oceanic Science Letters》 2025年第1期18-23,共6页
Due to the lack of accurate data and complex parameterization,the prediction of groundwater depth is a chal-lenge for numerical models.Machine learning can effectively solve this issue and has been proven useful in th... Due to the lack of accurate data and complex parameterization,the prediction of groundwater depth is a chal-lenge for numerical models.Machine learning can effectively solve this issue and has been proven useful in the prediction of groundwater depth in many areas.In this study,two new models are applied to the prediction of groundwater depth in the Ningxia area,China.The two models combine the improved dung beetle optimizer(DBO)algorithm with two deep learning models:The Multi-head Attention-Convolution Neural Network-Long Short Term Memory networks(MH-CNN-LSTM)and the Multi-head Attention-Convolution Neural Network-Gated Recurrent Unit(MH-CNN-GRU).The models with DBO show better prediction performance,with larger R(correlation coefficient),RPD(residual prediction deviation),and lower RMSE(root-mean-square error).Com-pared with the models with the original DBO,the R and RPD of models with the improved DBO increase by over 1.5%,and the RMSE decreases by over 1.8%,indicating better prediction results.In addition,compared with the multiple linear regression model,a traditional statistical model,deep learning models have better prediction performance. 展开更多
关键词 groundwater depth Multi-head attention Improved dung beetle optimizer CNN-LSTM CNN-GRU Ningxia
下载PDF
Concentrations of Potentially Toxic Elements in Groundwater and Surface Water in Ruashi and Annexe Municipalities of Lubumbashi City, Southeastern Democratic Republic of Congo
2
作者 Bamba Bukengu Muhaya Benjamin Busomoke Badarhi 《Journal of Environmental Science and Engineering(A)》 CAS 2025年第1期1-13,共13页
Groundwater and surface water contamination by PTE(Potentially Toxic Elements)was assessed in Ruashi and Annexe municipalities of Lubumbashi city.Analyses of seventy water samples collected from six drilled wells,eigh... Groundwater and surface water contamination by PTE(Potentially Toxic Elements)was assessed in Ruashi and Annexe municipalities of Lubumbashi city.Analyses of seventy water samples collected from six drilled wells,eight spade-sunk wells,one river and one spring in both municipalities in 2017 and 2018 were carried out by ICP-SF-MS(Inductively Coupled Plasma-Sector Field Mass Spectrometry).Twenty PTEs including aluminum,arsenic,barium,bismuth,cadmium,cesium,chromium,cobalt,copper,iron,lead,manganese,molybdenum,nickel,strontium,thallium,tungsten,uranium,vanadium and zinc were detected at various concentrations in each one of the samples.Many samples had concentrations and mean concentrations of PTEs,such as aluminum,cadmium,copper,iron,lead,manganese,nickel and zinc,higher than the respective acceptable limits set for drinking water by the EU(European Union),the USEPA(United States Environmental Protection Agency),and the WHO(World Health Organization)standards.Most PTEs being deleterious to human health even at very low concentrations,people who use the groundwater and surface water to meet their water needs in both Ruashi and Annexe municipalities are at risk. 展开更多
关键词 CONTAMINATION groundwater PTEs spring STREAM Ruashi and Annexe municipalities Lubumbashi city.
下载PDF
Groundwater recharge via precipitation in the Badain Jaran Desert,China 被引量:2
3
作者 Zhe Wang Li-juan Wang +3 位作者 Jian-mei Shen Zhen-long Nie Le Cao Ling-qun Meng 《Journal of Groundwater Science and Engineering》 2024年第1期109-118,共10页
Precipitation infiltration serves as a significant source of groundwater in the Badain Jaran Desert.To investigate variations in precipitation infiltration within the desert,this study collected data on moisture conte... Precipitation infiltration serves as a significant source of groundwater in the Badain Jaran Desert.To investigate variations in precipitation infiltration within the desert,this study collected data on moisture content and temperature from the vadose zone through in-situ field monitoring.Utilizing these data,a numerical model is employed to explore the mechanism of groundwater recharge via precipitation.The results are as follows:(1)Moisture content and temperature in the shallow vadose zone exhibit significant seasonal variations,with moisture content diminishing with increasing depth;(2)Groundwater recharge via precipitation infiltration initially increases and then decreases with groundwater level depth(GWD).Peak groundwater recharge via precipitation occurs at a GWD of 0.75 m,decreasing to merely 0.012 cm at GWDs exceeding 2 m;(3)Groundwater is no longer susceptible to phreatic water evaporation when the GWD reaches approximately 3.7 m.Therefore,GWD plays a crucial role in governing groundwater recharge via precipitation in the Badain Jaran Desert. 展开更多
关键词 Badain Jaran Desert Vadose zone groundwater recharge In situ monitoring Numerical simulation
下载PDF
Use of Groundwater, Baseflow and SPEI to Evaluate Water Resources in Michigan, USA
4
作者 Sawyer Schnettler Alexis Sonnemann Katherine Clancy 《Journal of Water Resource and Protection》 CAS 2024年第10期640-670,共31页
Precipitation and evaporation are commonly used to assess and forecast droughts. However, surface and groundwater respond to both land surface processes, land use, and climatic variables, and should be integrated into... Precipitation and evaporation are commonly used to assess and forecast droughts. However, surface and groundwater respond to both land surface processes, land use, and climatic variables, and should be integrated into water management decisions. Water trend analysis near the Great Lakes is limited due to fluctuating cycles and data scarcity. In this study, we examine daily discharge data from 46 surface water gauges with high baseflow contributions and groundwater elevation from 28 observation wells in Michigan. Using established hydrograph separation techniques, we determined baseflow and standardized both annual average baseflow levels (SDBF) and groundwater levels (SDGW) from 1960 to 2022. These results are compared to the widely used Standardized Precipitation-Evapotranspiration Index (SPEI). SPEI is a widely used drought indicator that integrates both precipitation and potential evapotranspiration, offering a more comprehensive measure of water balance. While the SPEI suggests that Michigan is becoming wetter, the SDBF shows a mix of both wet and dry conditions. Interpreting SDGW is more challenging due to incomplete records, but it indicates varying groundwater stability across the state. In some areas, SDGW mirrors the trends seen in SDBF, while in others, it takes 3 to 4 years for groundwater levels to reflect the same changes observed in baseflow. Overall, SDBF provides a better understanding of surface processes and responses to changing climatic variables. 展开更多
关键词 SPEI DROUGHT groundwater BASEFLOW
下载PDF
Evaluation and Prediction of Groundwater Quality in the Municipality of Za-Kpota (South Benin) Using Machine Learning and Remote Sensing
5
作者 Jennifer A. Ahlonsou Firmin M. Adandedji +2 位作者 Abdoukarim Alassane Consolas Adihou Mama Daouda 《Journal of Water Resource and Protection》 CAS 2024年第7期502-522,共21页
Accessing drinking water is a global issue. This study aims to contribute to the assessment of groundwater quality in the municipality of Za-Kpota (southern Benin) using remote sensing and Machine Learning. The method... Accessing drinking water is a global issue. This study aims to contribute to the assessment of groundwater quality in the municipality of Za-Kpota (southern Benin) using remote sensing and Machine Learning. The methodological approach used consisted in linking groundwater physico-chemical parameter data collected in the field and in the laboratory using AFNOR 1994 standardized methods to satellite data (Landsat) in order to sketch out a groundwater quality prediction model. The data was processed using QGis (Semi-Automatic Plugin: SCP) and Python (Jupyter Netebook: Prediction) softwares. The results of water analysis from the sampled wells and boreholes indicated that most of the water is acidic (pH varying between 5.59 and 7.83). The water was moderately mineralized, with conductivity values of less than 1500 μs/cm overall (59 µS/cm to 1344 µS/cm), with high concentrations of nitrates and phosphates in places. The dynamics of groundwater quality in the municipality of Za-Kpota between 2008 and 2022 are also marked by a regression in land use units (a regression in vegetation and marshland formation in favor of built-up areas, bare soil, crops and fallow land) revealed by the diachronic analysis of satellite images from 2008, 2013, 2018 and 2022. Surveys of local residents revealed the use of herbicides and pesticides in agricultural fields, which are the main drivers contributing to the groundwater quality deterioration observed in the study area. Field surveys revealed the use of herbicides and pesticides in agricultural fields, which are factors contributing to the deterioration in groundwater quality observed in the study area. The results of the groundwater quality prediction models (ANN, RF and LR) developed led to the conclusion that the model based on Artificial Neural Networks (ANN: R2 = 0.97 and RMSE = 0) is the best for groundwater quality changes modelling in the Za-Kpota municipality. 展开更多
关键词 groundwater Land Use Electrical Conductivity Machine Learning Za-Kpota
下载PDF
Groundwater Modelling of Motloutse Alluvial Aquifer, Eastern Botswana
6
作者 Edwin O. Keaitse Nata T. Tafesse +2 位作者 Berhanu F. Alemaw Kebabonye Laletsang Read B. M. Mapeo 《Journal of Water Resource and Protection》 CAS 2024年第10期627-639,共13页
The potential groundwater reserve in alluvial aquifers and sandy river beds has not been well studied, and yet their benefit in meeting rural water supply demands cannot be underestimated. A three-dimensional steady-s... The potential groundwater reserve in alluvial aquifers and sandy river beds has not been well studied, and yet their benefit in meeting rural water supply demands cannot be underestimated. A three-dimensional steady-state finite difference numerical groundwater flow model was used to assess the groundwater resource potential on a one-kilometre river stretch scale along the Motloutse River catchment in eastern Botswana. The model area is a single-layer unconfined aquifer system. A uniform grid was laid over this phreatic aquifer, and an overall size of 50 columns x 54 rows was developed. The model yielded calibrated K values of 145 m/day and 11 m/day for the riverbed and riverbank sediments, respectively, and calibrated recharge and evaporation of 172 mm/yr and 120 mm/yr, respectively. A sustainable groundwater yield of 120 m3/day with the potential to irrigate an area of 2.4 hectares was determined. The result also shows that the Motloutse alluvial aquifer yields a safe yield of 29,400 m3 for a kilometre of river stretch. 展开更多
关键词 Alluvial Aquifer groundwater Hydraulic Conductivity Motloutse River Eastern Botswana
下载PDF
Investigation of Groundwater Quality with Borehole Depth in the Basin Granitoids of the Ashanti Region of Ghana
7
作者 Bernard Ofosu Augustine Kofi Asante +2 位作者 Festus Anane Mensah Umar-Farouk Usman Naa Korkoi Ayeh 《Journal of Water Resource and Protection》 CAS 2024年第5期381-394,共14页
The dependence of groundwater quality on borehole depth is usually debatable in groundwater studies, especially in complex geological formations where aquifer characteristics vary spatially with depth. This study ther... The dependence of groundwater quality on borehole depth is usually debatable in groundwater studies, especially in complex geological formations where aquifer characteristics vary spatially with depth. This study therefore seeks to investigate the relationship between borehole depth and groundwater quality across the granitoid aquifers within the Birimian Supergroup in the Ashanti Region. Physicochemical analysis records of groundwater quality data were collected from 23 boreholes of public and private institutions in the Ashanti Region of Ghana, and the parametric values of iron, fluoride, total hardness, pH, nitrate, and nitrite were used to study the groundwater quality-depth relationship. The results showed that the depth-to-groundwater quality indicated a marginal increase in water quality in the range of 30 to 50 m, which is mathematically represented by the low-value correlation coefficient (r<sup>2</sup> = 0.026). A relatively significant increase occurs in the depth range of 50 to 80 m, which is given by a correlation coefficient of r<sup>2</sup> = 0.298. The mean percent parameter compatibility was 74%, 82%, 89%, and 97% at 50, 60, 70, and 80 m depths, respectively. The variations in groundwater quality per depth ratio ranged from 1.48, 1.37, 1.27, and 1.21 for 50, 60, 70, and 80 m depth, respectively. The recommended minimum borehole depth for excellent groundwater quality is suggested with a compatibility per meter depth ratio of 1.37. This results in a range between 50 and 70 m as the most desirable drilling depth for excellent groundwater quality within the granitoids of the Birimian Supergroup of the Ashanti Region in Ghana. 展开更多
关键词 groundwater Quality Borehole Depth Birimian Supergroup Granitoid Aquifers Ashanti Region
下载PDF
Spatial Distribution and Potential Health Risk Assessment of Fluoride and Nitrate Concentrations in Groundwater from Mbour-Fatick Area, Western Central Senegal
8
作者 Mathias Diedhiou Seyni Ndoye +4 位作者 Awa Diagne Arnaud Gauthier Stephan Whonlich Serigne Faye Philippe Le Coustumer 《Journal of Water Resource and Protection》 CAS 2024年第11期695-719,共25页
This study aims to delineate the spatial distribution of nitrate and fluoride in groundwater and to estimate the non-carcinogenic risks using the human health risk assessment model recommended by the United States Env... This study aims to delineate the spatial distribution of nitrate and fluoride in groundwater and to estimate the non-carcinogenic risks using the human health risk assessment model recommended by the United States Environmental Protection Agency (USEPA). Forty-two samples were collected from wells and boreholes and analyzed for nitrate, fluoride and other water quality parameters. Results of the study indicate that fluoride and nitrate concentrations vary respectively from 0.13 to 9.41 mg·L−1 and from 0.13 to 432.24 mg·L−1 with respective median values of 2.65 and 13.85. About 69% of groundwater samples exceed the allowable limit (1.5 mg·L−1) of fluoride for drinking water. Spatial distribution of fluoride shows high concentrations in certain localities with values ranging from 6.74 mg·L−1 to 9.41 mg·L−1. The spatial distribution of nitrate indicates that the majority of water samples (87.18%) have nitrate concentrations lower than the World Health Organization (WHO) standard guideline value of 50 mg·L−1. Assessment of non-carcinogenic risks associated with intake of polluted groundwater in local populations indicates that 82.05% and 87.18% of groundwater samples have a THI > 1 in adults and children, respectively. However, the highest THI value (15.87) was recorded for children suggesting that children face greater non-carcinogenic risks than adults. The results of this study can be used as a support by the policymakers and practitioners to develop appropriate policies for effective and sustainable groundwater management and to monitor human health implications. 展开更多
关键词 FLUORIDE NITRATE groundwater Quality Human Health Risk Western Central Senegal
下载PDF
Integrated Geological and Geophysical Mapping for Groundwater Potential Studies at Ekwegbe-Agu and Environs, Enugu State, Nigeria
9
作者 Charles Chibueze Ugbor Ugochukwu Kingsley Ogbodo Osita Kelechi Eze 《Open Journal of Geology》 CAS 2024年第4期513-547,共35页
The study integrates both the geological and geophysical mapping techniques for groundwater potential studies at Ekwegbe-Agu and the environs, Enugu state, Nigeria for optimal citing of borehole. Located in the Anambr... The study integrates both the geological and geophysical mapping techniques for groundwater potential studies at Ekwegbe-Agu and the environs, Enugu state, Nigeria for optimal citing of borehole. Located in the Anambra Basin between latitudes 6˚43'N and 6˚47'N and longitudes 7˚28'E and 7˚32'E, it is stratigraphycally underlain by, from bottom to top, the Enugu/Nkporo, Mamu and Ajali Formation respectively, a complex geology that make citing of productive borehole in the area problematic leading to borehole failure and dry holes due to inadequate sampling. The study adopted a field and analytic sampling approach, integrating field geological, electrical resistivity and self-potential methods. The software, SedLog v3.1, InterpexIx1Dv.3, and Surfer v10 were employed for the data integration and interpretation. The result of the geological field and borehole data shows 11 sedimentary facies consisting of sandstone, shales and heterolith of sandstone/shale, with the aquifer zone mostly prevalent in the more porous sand-dominated horizons. Mostly the AK and HK were the dominant curve types. An average of 6 geo-electric layers were delineated across all transects with resistivity values ranging from 25.42 - 105.85 Ωm, 186.38 - 3383.3 Ωm, and 2992 - 6286.4 Ωm in the Enugu, Mamu and Ajali Formations respectively. The resistivity of the main aquifer layer ranges from 1 to 500 Ωm. The aquifer thickness within the study area varies between 95 and 140 m. The western and northwestern part of the study area which is underlain mainly by the Ajali Formation showed the highest groundwater potential in the area and suitable for citing productive boreholes. 展开更多
关键词 SEISMIC Ekwegbe-Agu groundwater RESISTIVITY Field Mapping Borehole Logging
下载PDF
Isotope Tracking of Surface Water Groundwater Interaction in the Beninese Part of the Iullemeden Aquifer System
10
作者 Houégnon Géraud Vinel Gbewezoun Samuel Yao Ganyaglo +4 位作者 Abdoukarim Alassane Samuel Boakye Dampare Gaya Salifou Orou Pete Alou Moussa Boukari Daouda Mama 《Journal of Water Resource and Protection》 CAS 2024年第7期489-501,共13页
The Kandi basin is located in northeast Benin (West Africa). This study is focused on the estimation of water fluxes exchanged between the river Niger (and its tributaries) and the transboundary Iullemeden Aquifer Sys... The Kandi basin is located in northeast Benin (West Africa). This study is focused on the estimation of water fluxes exchanged between the river Niger (and its tributaries) and the transboundary Iullemeden Aquifer System. In that framework, an innovative approach based on the application of the Bayesian Mixing Model (MixSIAR) analysis on water isotopes (oxygen-18, deuterium and tritium) was performed. Moreover, to assess the relevance of the model outputs, Pearson’s correlation and Principal Component Analysis (PCA) have been done. A complex relationship between surface water and groundwater has been found. Sixty percent (60%) of groundwater samples are made of more than 70% river water and rainwater;while 31.25% of surface water samples are made of about 84% groundwater. To safeguard sustainable water resources for the well-being of the local communities, surface water and groundwater must be managed as a unique component in the Kandi basin. 展开更多
关键词 BENIN West Africa Kandi basin Iullemeden Aquifer System Surface Water groundwater Interaction
下载PDF
Enhanced electrochemical nitrate removal from groundwater by simply calcined Ti nanopores with modified surface characters
11
作者 Yuan Meng Wanli Tan +4 位作者 Shuang Lv Fang Liu Jindun Xu Xuejiao Ma Jia Huang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第11期74-85,共12页
A simple and convenient preparation method with high catalytic reduction activity is crucial for the remediation of nitrate contamination.In this study,the innovation for fabricating a nanoelectrode was developed by c... A simple and convenient preparation method with high catalytic reduction activity is crucial for the remediation of nitrate contamination.In this study,the innovation for fabricating a nanoelectrode was developed by calcinating the anodized plate to alter the surface crystalline phase of the material.The prepared calcined Ti nanopores(TNPs)electrode could effectively remove up to 95.1%nitrate from simulated groundwater at 30 mA·cm^(-2)electrolysis for 90 min,while under the same conditions,the removal efficiency of nanoelectrode prepared by conventional methods was merely 52.5%.Scanning electron microscopy images indicated that the calcined TNP nanoelectrode was porous with different pore sizes.The higher nitrate removal efficiency of TNPs-500(95.1%)than TNPs-400(77.5%)and TNPs-550(93.4%)may resulted from the positive nonlinear response of the larger electrochemical active surface area,the improved electron transfer and suitable surface structure,and not the“anatase-torutile”of surface TiO_(2)nanotubes.After 90 min of electrolysis,using RuO_(2)as an anode and adding 0.3 g·L^(-1)NaCl solution,87.5%nitrate was removed,and the by-products(ammonia and nitrite)were negligible.Increased temperature and alkaline conditions can enhance the nitrate removal,while higher initial nitrate concentration only improved the nitrate removal slightly.Moreover,The TNPs-500 electrode also exhibited excellent nitrate removal performance in real groundwater with the efficiency at 82.9%and 92.1%after 90 and 120 min,which were 0.87(removal efficiency=95.1%),0.92(removal efficiency=100%)of the efficiency for simulated groundwater,indicating the widely applicable conditions of the TNPs-500 electrode.This approach of surface-bonded elements and structure modification through calcination significantly improves catalytic activity and will guide the simple designing of functional nanostructured electrodes with wide application conditions. 展开更多
关键词 Nitrate reduction ELECTROCHEMISTRY CALCINATION groundwater NANOMATERIALS Environment
下载PDF
Geogenic Pollution of Groundwater Quality in Gampaha District, Sri Lanka: A Case Study of Groundwater Acidification from Rathupaswala
12
作者 Ishara Pathirage Anushka Upamali Rajapaksha +1 位作者 S. P. Sucharitha Bandara G. W. A. Rohan Fernando 《International Journal of Geosciences》 CAS 2024年第8期590-604,共15页
Over recent decades, Gampaha district, Sri Lanka, has experienced significant urbanisation and industrial growth, increasing groundwater demand due to limited and polluted surface water resources. In 2013, a community... Over recent decades, Gampaha district, Sri Lanka, has experienced significant urbanisation and industrial growth, increasing groundwater demand due to limited and polluted surface water resources. In 2013, a community uprising in Rathupaswala, a village in Gampaha district, accused a latex glove manufacturing factory of causing groundwater acidity (pH < 4). This study evaluates the spatial and temporal changes in geochemical parameters across three transects in the southern part of Gampaha district to 1) assess the impact of geological formations on groundwater;2) compare temporal variations in groundwater;and 3) explain acidification via a geochemical model. Seventy-two sample locations were tested for pH, electrical conductivity (EC), and anion concentrations (sulphate, nitrate, chloride and fluoride). Depth to the water table and distance from the sea were measured to study variations across sandy, peaty, lateritic, and crystalline aquifers. Results showed pH readings around 7 for sandy and crystalline aquifers, below 7 for peaty aquifers, and below 5 for lateritic aquifers, with significant water table fluctuations near Rathupaswala area. Principal component analysis revealed three principal components (PCs) explaining 86.0% of the variance. PC1 (40.6%) correlated with pH, EC, and sulphate (saltwater intrusion), while PC2 (32.0%) correlated with nitrates and depth to the water table (anthropogenic nutrient pollution). A geochemical transport model indicated a cone of depression recharged by acidic groundwater from peat-soil aquifers, leading to acidic groundwater in Rathupaswala area. Previous attributions of acidic pH to the over-exploitation of groundwater by the latex factory have been reevaluated;the results suggest natural acidification from prolonged water-rock interactions with iron-rich lateritic aquifers. Groundwater pH is influenced by local climate, geology, topography, and drainage systems. It is recommended that similar water-rock interaction conditions may be present throughout the wet zone of Sri Lanka, warranting detailed studies to confirm this hypothesis. 展开更多
关键词 groundwater Acidification Acid Sulphate Soils (AAS) Ion Chromatography groundwater Quality
下载PDF
Hydrochemical Constraints on the Flowing Paths of Groundwater in Limestone Reservoirs beneath the Pingdingshan Coalfield in North China
13
作者 WU Zhanhui WANG Xinyi +2 位作者 LI Jiexiang CUI Junchao ZHANG Bo 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2024年第6期1615-1636,共22页
The karst groundwater of Cambrian limestone may become an important water source for industry and agriculture in the Pingdingshan area,and is also a potential threat to mining safety.Therefore,to find out the origin,f... The karst groundwater of Cambrian limestone may become an important water source for industry and agriculture in the Pingdingshan area,and is also a potential threat to mining safety.Therefore,to find out the origin,flow paths,and hydrogeochemical processes of karst groundwater beneath the Pingdingshan coalfield,a total of 16 water samples were collected.Our findings confirmed that the karst groundwater is mainly recharged by precipitation.The precipitation can directly supply the deep aquifer of the karst water system through the southwest limestone outcrops,and this area mostly includes the southern part of mines No.11,No.9,and the hidden outcrops in the southern part of mine No.2.What is more,the areas adjacent to the synclinal axis,including mines No.10,No.12,and No.8,may be the main discharge areas.A mixing model of^(87)Sr/^(86)Sr and Sr showed that in the southwest Pingdingshan coalfield,the proportion of precipitation decreased gradually from the recharge area to the discharge area,ranging from 89.1%to 17.1%.Besides,the northeast Pingdingshan coalfield is another recharge area for the whole karst system,thus,the infiltrating groundwater will indirectly supply the deep aquifer through Quaternary deposition near the mine No.13.Our research results can provide theoretical support for the prevention and control of groundwater disasters and the development and utilization of regional groundwater resources in the coalfield in Northern China. 展开更多
关键词 groundwater flowing path HYDROCHEMISTRY strontium isotope Pingdingshan coalfield
下载PDF
Conventional and futuristic approaches for the computation of groundwater recharge:A comprehensive review
14
作者 Shamla Rasheed Marykutty Abraham 《Journal of Groundwater Science and Engineering》 2024年第4期428-452,共25页
Groundwater recharge is a critical hydrologic component that determines groundwater availability and sustainability.Groundwater recharge estimation can be performed in a variety of ways,ranging from direct procedures ... Groundwater recharge is a critical hydrologic component that determines groundwater availability and sustainability.Groundwater recharge estimation can be performed in a variety of ways,ranging from direct procedures to simulation models.The optimal strategy for recharge estimation depends on several factors,such as study objectives,climatic zones,hydrogeological conditions,data availability,methodology,and temporal and spatial constraints.Groundwater recharge is influenced by uncertainties in weather and hydrology.This study discusses conventional recharge estimation techniques and their application for optimal recharge calculation,and it also offers an overview of recent advances in recharge estimation methods.Most methods provide direct or indirect estimation of recharge across a small region on a point scale for a shorter time.With recent technological advancements and increased data availability,several advanced computational tools,including numerical,empirical,and artificial intelligence models,have been developed for efficient and reliable computation of groundwater recharge.This review article provides a thorough discussion of the techniques,assumptions,advantages,limitations,and selection procedures for estimating groundwater recharge. 展开更多
关键词 groundwater recharge groundwater balance groundwater flow Machine learning Deep learning
下载PDF
Harmful evaluation of heavy metals from soil layer to the groundwater: Take the Jilin Hunchun Basin as an example 被引量:1
15
作者 Xiao-Dong Guo Qiang Liu +3 位作者 Hui-Rong Zhang Xu-Fei Shi Chuan-Yu Qin Zhi-Qiang Zhang 《China Geology》 CAS CSCD 2024年第1期116-124,共9页
The continuous enrichment of heavy metals in soils has caused potential harm to groundwater.Quantitative methods to evaluate the harm of heavy metals in soil to groundwater are lacked in previous studies.Based on the ... The continuous enrichment of heavy metals in soils has caused potential harm to groundwater.Quantitative methods to evaluate the harm of heavy metals in soil to groundwater are lacked in previous studies.Based on the theory of groundwater circulation and solid-liquid equilibrium,a simple and easy-touse flux model of soil heavy metals migrating to groundwater is constructed.Based on groundwater environmental capacity,an innovative method for evaluating the harm of heavy metals in soil to groundwater is proposed,which has been applied in Hunchun Basin,Jilin Province,China.The results show that the fluxes of soil heavy metals into groundwater in the study area are Zn,Cu,As,Pb,Cd,Ni,and Hg in descending order.The content of heavy metals in groundwater(As,Hg,Cu,Pb,Zn,Ni,and Cd)in most areas has not risen to the threshold of environmental capacity within 10 years.The harm levels of soil heavy metals to groundwater in the most townships soils are at the moderate level or below.This evaluation method can quantify the flux of soil heavy metals into groundwater simply and quickly,determine the residual capacity of groundwater to heavy metals,evaluate the harm level of soil heavy metals to groundwater,provide support for relevant departments to carry out environmental protection of soil and groundwater,and provide a reference to carry out similar studies for related scholars. 展开更多
关键词 Soil heavy metals As+Hg+Cu+Pb+Zn+Ni+Cd Environmental capacity groundwater Hazard degree Migration flux model Agricultural geological survey engineering Hunchun Basin Jilin Province
下载PDF
Evaluating the characteristics of geological structures in karst groundwater inflow, Nowsud Tunnel
16
作者 BAYAT Narges SADEGHI Erfan NASSERY Hamid Reza 《Journal of Mountain Science》 SCIE CSCD 2024年第10期3434-3452,共19页
Highly permeable geological structures such as dissolution channels, open fractures, and faults create environmental challenges regard to hydrological and hydrogeological aspects of underground construction, often cau... Highly permeable geological structures such as dissolution channels, open fractures, and faults create environmental challenges regard to hydrological and hydrogeological aspects of underground construction, often causing significant groundwater inflow during drilling due to the limitations of empirical and analytical methods. This study aims to identify the geological factors influencing water flow into the tunnel. High-flow zones' geological features have been identified and examined for this purpose. According to the geological complexity of the Nowsud tunnel, presence of different formations with different permeability and karstification have led to a high volume of underground inflow water (up to 4700 L/s) to the tunnel. The Nowsud tunnel faces significant geological and hydrogeological challenges due to its passage through the Ilam formation's LI2 unit, characterized by dissolution channels, faults, and fractures. The highest inflow rate (4700 L/s) occurred in the Hz-9 zone within the Zimkan anticline. The relationship between geological features and groundwater inflow indicates that anticlines are more susceptible to inflow than synclines. Additionally, different types of faults exhibit varying hydraulic effects, with strike-slip faults having the most significant impact on groundwater inflow, thrust faults conducting less water into the tunnel, and inflow through normal faults being negligible compared to the other two types of faults. The novelty of this paper lies in its detailed analysis of geological features influencing groundwater inflow into the Nowsud tunnel, providing empirical data on high-flow zones and differentiating the hydraulic effects of various fault types, which enhances the understanding and prediction of groundwater inflow in underground constructions. 展开更多
关键词 Geological structures groundwater inflow HYDROGEOLOGY Nowsud tunnel KARST
下载PDF
Groundwater and environmental challenges in Asia
17
作者 Yan-pei Cheng Fa-wang Zhang +1 位作者 Hua Dong Xue-ru Wen 《Journal of Groundwater Science and Engineering》 2024年第2期223-236,共14页
Asia stands out as the most populous and geographically diverse region globally.The pressing issues of water resource development and the resulting ecological impacts are exacerbated by the region's rapid populati... Asia stands out as the most populous and geographically diverse region globally.The pressing issues of water resource development and the resulting ecological impacts are exacerbated by the region's rapid population growth and economic expansion.Groundwater,a vital source of water in Asia,faces significant disparities in distribution and suffers from unsustainable exploitation practices.This study applies groundwater system theory and categorizes Asia into 11 primary groundwater systems and 36 secondary ones,based on intercontinental geological structures,climate,terrain,and hydrogeological characteristics.As of the end of 2010,Asia's assessed groundwater resources totalled 4.677×10^(9) m^(3)/a,with exploitable resources amounting to 3.274×10^(9) m^(3)/a.By considering the geological environmental impacts of groundwater development and the distinctive characteristics of terrain and landforms,six categories of effect zones with varying distribution patterns are identified.The current research on Asia's groundwater resources,environmental dynamics,and human impacts aims to provide a theoretical foundation for sustainable groundwater management and environmental conservation in the region. 展开更多
关键词 ASIA groundwater resources groundwater quality Ecological environment Environmental impacts
下载PDF
Evaluation of Aquifer Characteristics and Groundwater Protective Capacity in Abavo, Nigeria
18
作者 Felix Iwebunor Chinyem Glory Ovwamuedo 《International Journal of Geosciences》 CAS 2024年第11期841-860,共20页
Aquifer characteristics evaluation enables the determination of aquifer’s ability to recharge as well as discharge. However, knowledge of aquifer characteristics has been scarce in Abavo area. Thus, geophysical and h... Aquifer characteristics evaluation enables the determination of aquifer’s ability to recharge as well as discharge. However, knowledge of aquifer characteristics has been scarce in Abavo area. Thus, geophysical and hydrogeological investigations, involving vertical electrical sounding (VES), pumping test and well logging were conducted in Abavo area, Nigeria, to evaluate the aquifer hydraulic properties as well as the groundwater protective capacity of the area. Seventeen (17) VES, using the Schlumberger configuration, were carried out. The field data were curve-matched, iterated, using Win Resist software. The VES result revealed subsurface lithology that comprised lateritic top soil/sand, sandy clay/clayey sand, fine sand, medium sand and coarse to gravelly sand. The VES result equally revealed an aquifer depth range from 28.8 - 76.6 m, with resistivity range from 1175 - 27,272 Ω·m. Two boreholes were drilled, the cuttings were collected and were used to model the subsurface lithology. Well logging result showed that the electrical conductivity (EC) as well as total dissolved solid (TDS) are 15 μs/cm and 112 mg/l respectively, indicative of the fact that the values were within the standard organization of Nigeria (SON) permissible limit for drinking water. Pumping test analysis, using the Cooper Jacob’s method, revealed that the transmissivity, specific capacity, storativity and hydraulic conductivity are 5.9 m2/day, 33.13 m/day, 0.0069 and 0.1722 m/day respectively. The study revealed longitudinal conductance and transverse resistance range of 0.001048 - 0.027828 Ω−1 and 105470.4 - 1255775.3 Ω·m2 respectively. These results have established that the aquifer is semi-confined, has poor protective capacity and high rechargibility and will provide adequate, potable groundwater for local water supply to communities for domestic and other purposes. 展开更多
关键词 groundwater TRANSMISSIVITY Abavo Pumping Test Vertical Electrical Sounding
下载PDF
Pumping-induced Well Hydraulics and Groundwater Budget in a Leaky Aquifer System with Vertical Heterogeneity in Aquitard Hydraulic Properties
19
作者 ZHUANG Chao LÜChenyang +5 位作者 YAN Long LI Yabing ZHOU Zhifang WANG Jinguo DOU Zhi Walter A.ILLMAN 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2024年第2期477-490,共14页
In groundwater hydrology,aquitard heterogeneity is often less considered compared to aquifers,despite its significant impact on groundwater hydraulics and groundwater resources evaluation.A semi-analytical solution is... In groundwater hydrology,aquitard heterogeneity is often less considered compared to aquifers,despite its significant impact on groundwater hydraulics and groundwater resources evaluation.A semi-analytical solution is derived for pumping-induced well hydraulics and groundwater budget with consideration of vertical heterogeneity in aquitard hydraulic conductivity(K)and specific storage(S_(s)).The proposed new solution is innovative in its partitioning of the aquitard into multiple homogeneous sub-layers to enable consideration of various forms of vertically heterogeneous K or S_(s).Two scenarios of analytical investigations are explored:one is the presence of aquitard interlayers with distinct K or S_(s) values,a common field-scale occurrence;another is an exponentially depth-decaying aquitard S_(s),a regional-scale phenomenon supported by statistical analysis.Analytical investigations reveal that a low-K interlayer can significantly increase aquifer drawdown and enhance aquifer/aquitard depletion;a high-S_(s) interlayer can noticeably reduce aquifer drawdown and increase aquitard depletion.Locations of low-K or high-S_(s) interlayers also significantly impact well hydraulics and groundwater budget.In the context of an exponentially depth-decaying aquitard S_(s),a larger decay exponent can enhance aquifer drawdown.When using current models with a vertically homogeneous aquitard,half the sum of the geometric and harmonic means of exponentially depth-decaying aquitard S_(s) should be used to calculate aquitard depletion and unconfined aquifer leakage. 展开更多
关键词 HYDROGEOLOGY AQUITARD vertical heterogeneity semi-analytical solution well hydraulics groundwater budget
下载PDF
Exploring groundwater quality in semi-arid areas of Algeria:Impacts on potable water supply and agricultural sustainability
20
作者 Noua ALLAOUA Hinda HAFID Haroun CHENCHOUNI 《Journal of Arid Land》 SCIE CSCD 2024年第2期147-167,共21页
Groundwater quality assessment is important to assure safe and durable water use.In semi-arid areas of Algeria,groundwater represents the main water resource for drinking water supply of the rural population as well a... Groundwater quality assessment is important to assure safe and durable water use.In semi-arid areas of Algeria,groundwater represents the main water resource for drinking water supply of the rural population as well as for irrigation of agricultural lands.Groundwater samples from wells and springs were collected from the Gargaat Tarf and Annk Djemel sub-watersheds of the Oum El Bouaghi,Algeria,and were analyzed and compared with the World Health Organization(WHO)standards.Results showed that most of the measured physical and chemical parameters exceeded the quality limits according to the WHO standards.Groundwater had a slightly alkaline water pH(7.00-7.79),electrical conductivity>1500μS/cm,chloride>500 mg/L,calcium>250 mg/L,and magnesium>155 mg/L.Water quality index(WQI)results showed that 68%of the area had excellent water quality,24%of the samples fell into good category,and only 8%were of poor quality and unsuitable for human consumption.Six wells in the area showed bacterial contamination.Total coliforms(453.9(±180.3)CFU(colony-forming units)/100 mL),fecal coliforms(243.2(±99.2)CFU/100 mL),and fecal streptococci(77.9(±32.0)CFU/100 mL)loads were above the standard limits set by the WHO.These results confirmed that water resources in the study area were strongly influenced by anthropogenic activities and were not recommended for consumption as drinking water. 展开更多
关键词 bacteriological indicator groundwater WATERSHED physical-chemical parameter water quality index
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部