期刊文献+
共找到22,932篇文章
< 1 2 250 >
每页显示 20 50 100
Evaluation and Prediction of Groundwater Quality in the Municipality of Za-Kpota (South Benin) Using Machine Learning and Remote Sensing
1
作者 Jennifer A. Ahlonsou Firmin M. Adandedji +2 位作者 Abdoukarim Alassane Consolas Adihou Mama Daouda 《Journal of Water Resource and Protection》 CAS 2024年第7期502-522,共21页
Accessing drinking water is a global issue. This study aims to contribute to the assessment of groundwater quality in the municipality of Za-Kpota (southern Benin) using remote sensing and Machine Learning. The method... Accessing drinking water is a global issue. This study aims to contribute to the assessment of groundwater quality in the municipality of Za-Kpota (southern Benin) using remote sensing and Machine Learning. The methodological approach used consisted in linking groundwater physico-chemical parameter data collected in the field and in the laboratory using AFNOR 1994 standardized methods to satellite data (Landsat) in order to sketch out a groundwater quality prediction model. The data was processed using QGis (Semi-Automatic Plugin: SCP) and Python (Jupyter Netebook: Prediction) softwares. The results of water analysis from the sampled wells and boreholes indicated that most of the water is acidic (pH varying between 5.59 and 7.83). The water was moderately mineralized, with conductivity values of less than 1500 μs/cm overall (59 µS/cm to 1344 µS/cm), with high concentrations of nitrates and phosphates in places. The dynamics of groundwater quality in the municipality of Za-Kpota between 2008 and 2022 are also marked by a regression in land use units (a regression in vegetation and marshland formation in favor of built-up areas, bare soil, crops and fallow land) revealed by the diachronic analysis of satellite images from 2008, 2013, 2018 and 2022. Surveys of local residents revealed the use of herbicides and pesticides in agricultural fields, which are the main drivers contributing to the groundwater quality deterioration observed in the study area. Field surveys revealed the use of herbicides and pesticides in agricultural fields, which are factors contributing to the deterioration in groundwater quality observed in the study area. The results of the groundwater quality prediction models (ANN, RF and LR) developed led to the conclusion that the model based on Artificial Neural Networks (ANN: R2 = 0.97 and RMSE = 0) is the best for groundwater quality changes modelling in the Za-Kpota municipality. 展开更多
关键词 groundwater Land Use Electrical Conductivity Machine Learning Za-Kpota
下载PDF
Investigation of Groundwater Quality with Borehole Depth in the Basin Granitoids of the Ashanti Region of Ghana
2
作者 Bernard Ofosu Augustine Kofi Asante +2 位作者 Festus Anane Mensah Umar-Farouk Usman Naa Korkoi Ayeh 《Journal of Water Resource and Protection》 CAS 2024年第5期381-394,共14页
The dependence of groundwater quality on borehole depth is usually debatable in groundwater studies, especially in complex geological formations where aquifer characteristics vary spatially with depth. This study ther... The dependence of groundwater quality on borehole depth is usually debatable in groundwater studies, especially in complex geological formations where aquifer characteristics vary spatially with depth. This study therefore seeks to investigate the relationship between borehole depth and groundwater quality across the granitoid aquifers within the Birimian Supergroup in the Ashanti Region. Physicochemical analysis records of groundwater quality data were collected from 23 boreholes of public and private institutions in the Ashanti Region of Ghana, and the parametric values of iron, fluoride, total hardness, pH, nitrate, and nitrite were used to study the groundwater quality-depth relationship. The results showed that the depth-to-groundwater quality indicated a marginal increase in water quality in the range of 30 to 50 m, which is mathematically represented by the low-value correlation coefficient (r<sup>2</sup> = 0.026). A relatively significant increase occurs in the depth range of 50 to 80 m, which is given by a correlation coefficient of r<sup>2</sup> = 0.298. The mean percent parameter compatibility was 74%, 82%, 89%, and 97% at 50, 60, 70, and 80 m depths, respectively. The variations in groundwater quality per depth ratio ranged from 1.48, 1.37, 1.27, and 1.21 for 50, 60, 70, and 80 m depth, respectively. The recommended minimum borehole depth for excellent groundwater quality is suggested with a compatibility per meter depth ratio of 1.37. This results in a range between 50 and 70 m as the most desirable drilling depth for excellent groundwater quality within the granitoids of the Birimian Supergroup of the Ashanti Region in Ghana. 展开更多
关键词 groundwater Quality Borehole Depth Birimian Supergroup Granitoid Aquifers Ashanti Region
下载PDF
Integrated Geological and Geophysical Mapping for Groundwater Potential Studies at Ekwegbe-Agu and Environs, Enugu State, Nigeria
3
作者 Charles Chibueze Ugbor Ugochukwu Kingsley Ogbodo Osita Kelechi Eze 《Open Journal of Geology》 CAS 2024年第4期513-547,共35页
The study integrates both the geological and geophysical mapping techniques for groundwater potential studies at Ekwegbe-Agu and the environs, Enugu state, Nigeria for optimal citing of borehole. Located in the Anambr... The study integrates both the geological and geophysical mapping techniques for groundwater potential studies at Ekwegbe-Agu and the environs, Enugu state, Nigeria for optimal citing of borehole. Located in the Anambra Basin between latitudes 6˚43'N and 6˚47'N and longitudes 7˚28'E and 7˚32'E, it is stratigraphycally underlain by, from bottom to top, the Enugu/Nkporo, Mamu and Ajali Formation respectively, a complex geology that make citing of productive borehole in the area problematic leading to borehole failure and dry holes due to inadequate sampling. The study adopted a field and analytic sampling approach, integrating field geological, electrical resistivity and self-potential methods. The software, SedLog v3.1, InterpexIx1Dv.3, and Surfer v10 were employed for the data integration and interpretation. The result of the geological field and borehole data shows 11 sedimentary facies consisting of sandstone, shales and heterolith of sandstone/shale, with the aquifer zone mostly prevalent in the more porous sand-dominated horizons. Mostly the AK and HK were the dominant curve types. An average of 6 geo-electric layers were delineated across all transects with resistivity values ranging from 25.42 - 105.85 Ωm, 186.38 - 3383.3 Ωm, and 2992 - 6286.4 Ωm in the Enugu, Mamu and Ajali Formations respectively. The resistivity of the main aquifer layer ranges from 1 to 500 Ωm. The aquifer thickness within the study area varies between 95 and 140 m. The western and northwestern part of the study area which is underlain mainly by the Ajali Formation showed the highest groundwater potential in the area and suitable for citing productive boreholes. 展开更多
关键词 SEISMIC Ekwegbe-Agu groundwater RESISTIVITY Field Mapping Borehole Logging
下载PDF
Isotope Tracking of Surface Water Groundwater Interaction in the Beninese Part of the Iullemeden Aquifer System
4
作者 Houégnon Géraud Vinel Gbewezoun Samuel Yao Ganyaglo +4 位作者 Abdoukarim Alassane Samuel Boakye Dampare Gaya Salifou Orou Pete Alou Moussa Boukari Daouda Mama 《Journal of Water Resource and Protection》 CAS 2024年第7期489-501,共13页
The Kandi basin is located in northeast Benin (West Africa). This study is focused on the estimation of water fluxes exchanged between the river Niger (and its tributaries) and the transboundary Iullemeden Aquifer Sys... The Kandi basin is located in northeast Benin (West Africa). This study is focused on the estimation of water fluxes exchanged between the river Niger (and its tributaries) and the transboundary Iullemeden Aquifer System. In that framework, an innovative approach based on the application of the Bayesian Mixing Model (MixSIAR) analysis on water isotopes (oxygen-18, deuterium and tritium) was performed. Moreover, to assess the relevance of the model outputs, Pearson’s correlation and Principal Component Analysis (PCA) have been done. A complex relationship between surface water and groundwater has been found. Sixty percent (60%) of groundwater samples are made of more than 70% river water and rainwater;while 31.25% of surface water samples are made of about 84% groundwater. To safeguard sustainable water resources for the well-being of the local communities, surface water and groundwater must be managed as a unique component in the Kandi basin. 展开更多
关键词 BENIN West Africa Kandi basin Iullemeden Aquifer System Surface Water groundwater Interaction
下载PDF
Exploring groundwater quality in semi-arid areas of Algeria:Impacts on potable water supply and agricultural sustainability
5
作者 Noua ALLAOUA Hinda HAFID Haroun CHENCHOUNI 《Journal of Arid Land》 SCIE CSCD 2024年第2期147-167,共21页
Groundwater quality assessment is important to assure safe and durable water use.In semi-arid areas of Algeria,groundwater represents the main water resource for drinking water supply of the rural population as well a... Groundwater quality assessment is important to assure safe and durable water use.In semi-arid areas of Algeria,groundwater represents the main water resource for drinking water supply of the rural population as well as for irrigation of agricultural lands.Groundwater samples from wells and springs were collected from the Gargaat Tarf and Annk Djemel sub-watersheds of the Oum El Bouaghi,Algeria,and were analyzed and compared with the World Health Organization(WHO)standards.Results showed that most of the measured physical and chemical parameters exceeded the quality limits according to the WHO standards.Groundwater had a slightly alkaline water pH(7.00-7.79),electrical conductivity>1500μS/cm,chloride>500 mg/L,calcium>250 mg/L,and magnesium>155 mg/L.Water quality index(WQI)results showed that 68%of the area had excellent water quality,24%of the samples fell into good category,and only 8%were of poor quality and unsuitable for human consumption.Six wells in the area showed bacterial contamination.Total coliforms(453.9(±180.3)CFU(colony-forming units)/100 mL),fecal coliforms(243.2(±99.2)CFU/100 mL),and fecal streptococci(77.9(±32.0)CFU/100 mL)loads were above the standard limits set by the WHO.These results confirmed that water resources in the study area were strongly influenced by anthropogenic activities and were not recommended for consumption as drinking water. 展开更多
关键词 bacteriological indicator groundwater WATERSHED physical-chemical parameter water quality index
下载PDF
Groundwater and environmental challenges in Asia
6
作者 Yan-pei Cheng Fa-wang Zhang +1 位作者 Hua Dong Xue-ru Wen 《Journal of Groundwater Science and Engineering》 2024年第2期223-236,共14页
Asia stands out as the most populous and geographically diverse region globally.The pressing issues of water resource development and the resulting ecological impacts are exacerbated by the region's rapid populati... Asia stands out as the most populous and geographically diverse region globally.The pressing issues of water resource development and the resulting ecological impacts are exacerbated by the region's rapid population growth and economic expansion.Groundwater,a vital source of water in Asia,faces significant disparities in distribution and suffers from unsustainable exploitation practices.This study applies groundwater system theory and categorizes Asia into 11 primary groundwater systems and 36 secondary ones,based on intercontinental geological structures,climate,terrain,and hydrogeological characteristics.As of the end of 2010,Asia's assessed groundwater resources totalled 4.677×10^(9) m^(3)/a,with exploitable resources amounting to 3.274×10^(9) m^(3)/a.By considering the geological environmental impacts of groundwater development and the distinctive characteristics of terrain and landforms,six categories of effect zones with varying distribution patterns are identified.The current research on Asia's groundwater resources,environmental dynamics,and human impacts aims to provide a theoretical foundation for sustainable groundwater management and environmental conservation in the region. 展开更多
关键词 ASIA groundwater resources groundwater quality Ecological environment Environmental impacts
下载PDF
Pumping-induced Well Hydraulics and Groundwater Budget in a Leaky Aquifer System with Vertical Heterogeneity in Aquitard Hydraulic Properties
7
作者 ZHUANG Chao LÜChenyang +5 位作者 YAN Long LI Yabing ZHOU Zhifang WANG Jinguo DOU Zhi Walter A.ILLMAN 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2024年第2期477-490,共14页
In groundwater hydrology,aquitard heterogeneity is often less considered compared to aquifers,despite its significant impact on groundwater hydraulics and groundwater resources evaluation.A semi-analytical solution is... In groundwater hydrology,aquitard heterogeneity is often less considered compared to aquifers,despite its significant impact on groundwater hydraulics and groundwater resources evaluation.A semi-analytical solution is derived for pumping-induced well hydraulics and groundwater budget with consideration of vertical heterogeneity in aquitard hydraulic conductivity(K)and specific storage(S_(s)).The proposed new solution is innovative in its partitioning of the aquitard into multiple homogeneous sub-layers to enable consideration of various forms of vertically heterogeneous K or S_(s).Two scenarios of analytical investigations are explored:one is the presence of aquitard interlayers with distinct K or S_(s) values,a common field-scale occurrence;another is an exponentially depth-decaying aquitard S_(s),a regional-scale phenomenon supported by statistical analysis.Analytical investigations reveal that a low-K interlayer can significantly increase aquifer drawdown and enhance aquifer/aquitard depletion;a high-S_(s) interlayer can noticeably reduce aquifer drawdown and increase aquitard depletion.Locations of low-K or high-S_(s) interlayers also significantly impact well hydraulics and groundwater budget.In the context of an exponentially depth-decaying aquitard S_(s),a larger decay exponent can enhance aquifer drawdown.When using current models with a vertically homogeneous aquitard,half the sum of the geometric and harmonic means of exponentially depth-decaying aquitard S_(s) should be used to calculate aquitard depletion and unconfined aquifer leakage. 展开更多
关键词 HYDROGEOLOGY AQUITARD vertical heterogeneity semi-analytical solution well hydraulics groundwater budget
下载PDF
Using neural network modeling to improve the detection accuracy of land subsidence due to groundwater withdrawal
8
作者 Ali M.RAJABI Ali EDALAT +1 位作者 Yasaman ABOLGHASEMI Mahdi KHODAPARAST 《Journal of Mountain Science》 SCIE CSCD 2024年第7期2320-2333,共14页
Despite the high efficiency of remote sensing methods for rapid and large-scale detection of subsidence phenomena,this technique has limitations such as atmospheric impact and temporal and spatial decorrelation that a... Despite the high efficiency of remote sensing methods for rapid and large-scale detection of subsidence phenomena,this technique has limitations such as atmospheric impact and temporal and spatial decorrelation that affect the accuracy of the results.This paper proposes a method based on an artificial neural network to improve the results of monitoring land subsidence due to groundwater overexploitation by radar interferometry in the Aliabad plain(Central Iran).In this regard,vertical ground deformations were monitored over 18 months using the Sentinel-1A SAR images.To model the land subsidence by a multilayer perceptron(MLP)artificial neural network,four parameters,including groundwater level,alluvial thickness,elastic modulus,and transmissivity have been applied.The model's generalizability was assessed using data derived for 144 days.According to the results,the neural network estimates the land subsidence at each ground point with an accuracy of 6.8 mm.A comparison between the predicted and actual values indicated a significant agreement.The MLP model can be used to improve the results of subsidence detection in the study area or other areas with similar characteristics. 展开更多
关键词 DINSAR Land subsidence groundwater withdrawal Aliabad plain Artificial neural network
下载PDF
Assessment of Groundwater Physico-Chemical Quality in the Ouémé Delta (Southern-Benin)
9
作者 Aoulatou Alassane Zakari Dadja Toyou Masamaéya Gnazou +5 位作者 Abdoukarim Alassane Kodjo Apelete Raoul Kpegli Ousmane Touré Boukari Bio Guidah Chabi Bénito Didier Koukpohounsi Daouda Mama 《Journal of Environmental Protection》 2024年第3期298-317,共20页
Groundwater resources are the main sources of water used to supply drinking water to the population of the Ouémé Delta via the Continental Terminal aquifer. Urbanization, population growth, and agricultural ... Groundwater resources are the main sources of water used to supply drinking water to the population of the Ouémé Delta via the Continental Terminal aquifer. Urbanization, population growth, and agricultural and industrial activities have resulted in a deterioration in the quality of these resources. To assess the quality of the delta’s groundwater and its suitability for human consumption and irrigation, a total of fourteen (14) physico-chemical parameters were analyzed in some forty existing water points between September 2020 and March 2021, using standard water analysis techniques. The values obtained were compared with the potability standards recommended by the World Health Organization (WHO) and the Republic of Benin and were subjected to statistical analysis (principal component analysis (PCA)). In addition, methods for determining the suitability of water for irrigation were used. The results showed that the waters are acidic to slightly neutral and influenced by ambient temperature. In addition, the waters are moderately mineralized, with conductivities (24 - 1205 μS/cm) in line with WHO standards. A comparison of the analytical results of the WHO (2017) and Benin (2001) standards indicates that the majority of the waters studied are of good quality for all the chemical parameters considered. Nevertheless, some samples show levels of nitrates (21%), potassium (14% to 16%), calcium (13%), ammonium (12%), nitrites (8%) and bicarbonates (10%) over their respective standards. The Wilcox and Riverside diagrams indicate that the majority of waters (90%) have excellent suitability for irrigation and no negative effect on soil fertilization. 展开更多
关键词 BENIN OuéméDelta groundwater Physico-Chemical Quality Consumption IRRIGATION
下载PDF
Assessment of groundwater quantity, quality, and associated health risk of the Tano river basin, Ghana
10
作者 Adwoba Kua-Manza Edjah Bruce Banoeng-Yakubo +6 位作者 Anthony Ewusi Enoch Sakyi-Yeboah David Saka Clara Turetta Giulio Cozzi David Atta-Peters Larry Pax Chegbeleh 《Acta Geochimica》 EI CAS CSCD 2024年第2期325-353,共29页
In the Tano River Basin,groundwater serves as a crucial resource;however,its quantity and quality with regard to trace elements and microbiological loadings remain poorly understood due to the lack of groundwater logs... In the Tano River Basin,groundwater serves as a crucial resource;however,its quantity and quality with regard to trace elements and microbiological loadings remain poorly understood due to the lack of groundwater logs and limited water research.This study presents a comprehensive analysis of the Tano River Basin,focusing on three key objectives.First,it investigated the aquifer hydraulic parameters and the results showed significant spatial variations in borehole depths,yields,transmissivity,hydraulic conductivity,and specific capacity.Deeper boreholes were concentrated in the northeastern and southeastern zones,while geological formations,particu-larly the Apollonian Formation,exhibit a strong influence on borehole yields.The study identified areas with high transmissivity and hydraulic conductivity in the southern and eastern regions,suggesting good groundwater avail-ability and suitability for sustainable water supply.Sec-ondly,the research investigated the groundwater quality and observed that the majority of borehole samples fall within WHO(Guidelines for Drinking-water Quality,Environmental Health Criteria,Geneva,2011,2017.http://www.who.int)limit.However,some samples have pH levels below the standards,although the groundwater generally qualifies as freshwater.The study further explores hydrochemical facies and health risk assessment,highlighting the dominance of Ca–HCO3 water type.Trace element analysis reveals minimal health risks from most elements,with chromium(Cr)as the primary contributor to chronic health risk.Overall,this study has provided a key insights into the Tano River Basin’s hydrogeology and associated health risks.The outcome of this research has contributed to the broader understanding of hydrogeologi-cal dynamics and the importance of managing groundwater resources sustainably in complex geological environments. 展开更多
关键词 groundwater Unsupervised machine learning technique HYDROCHEMISTRY Aquifer hydraulic parameter Health risk
下载PDF
Developing three-dimensional groundwater flow modeling for the Erbil Basin using Groundwater Modeling System (GMS)
11
作者 Jwan Sabah Mustafa Dana Khider Mawlood 《Journal of Groundwater Science and Engineering》 2024年第2期178-189,共12页
This study presents the development of a comprehensive three-dimensional groundwater flow model for the Erbil Basin utilizing the Groundwater Modeling System(GMS).The Erbil Basin,situated in the Kurdistan Region of Ir... This study presents the development of a comprehensive three-dimensional groundwater flow model for the Erbil Basin utilizing the Groundwater Modeling System(GMS).The Erbil Basin,situated in the Kurdistan Region of Iraq,is a vital water resource area facing increasing water demands and environ-mental challenges.The three-dimensional nature of the groundwater flow system is crucial for accurately understanding and managing water resources in the basin.The modeling process involved data collection,geological and hydrogeological characterization,conceptual model development,and numerical simulation using GMS software MODFLOW 2000 package.Various parameters such as hydraulic conductivity,recharge rates,and boundary conditions were integrated into the model to represent the complex hydrogeo-logical conditions of the basin.Model calibration was performed by comparing simulated groundwater levels with observed data from monitoring wells across the basin,using the automatic calibration method of automated Parameter Estimation(PEST).Pilot points were applied to adjust the hydraulic conductivity in the model area spatially.Sensitivity analysis was conducted to assess the influence of key parameters on model predictions and to identify areas of uncertainty.The developed three-dimensional groundwater flow model provides valuable insights into the dynamics of groundwater flow,recharge-discharge mechanisms,and potential impacts of future scenarios such as climate change and water resource management strategies.It serves as a useful tool for decision-makers,water resource managers,and researchers to evaluate differ-ent management scenarios and formulate sustainable groundwater management policies for the Erbil Basin.In conclusion,this study demonstrates the effectiveness of using GMS for developing three-dimensional groundwater flow models in complex hydrogeological settings like the Erbil Basin,contributing to improved understanding and management of groundwater resources in the region. 展开更多
关键词 Aquifer System Erbil Basin groundwater Management GMS MODFLOW
下载PDF
Groundwater vulnerability assessment using a GIS-based DRASTIC method in the Erbil Dumpsite area (Kani Qirzhala), Central Erbil Basin, North Iraq
12
作者 Masoud H Hamed Rebwar N Dara Marios C Kirlas 《Journal of Groundwater Science and Engineering》 2024年第1期16-33,共18页
Groundwater vulnerability assessment is a crucial step in the efficient management of groundwater resources,especially in areas with intensive anthropogenic activities and groundwater pollution.In the present study,th... Groundwater vulnerability assessment is a crucial step in the efficient management of groundwater resources,especially in areas with intensive anthropogenic activities and groundwater pollution.In the present study,the DRASTIC method was applied using Geographic Information System(GIS)to delineate groundwater vulnerability zones in the Erbil Dumpsite area,Central Erbil Basin,North Iraq.Results showed that the area was classified into four vulnerability classes:Very low(16.97%),low(27.67%),moderate(36.55%)and high(18.81%).The southern,south-eastern and northern parts of the study area exhibited the highest vulnerability potential,while the central-northern,northern and north-western regions displayed the lowest vulnerability potential.Moreover,results of the single-parameter sensitivity analysis indicated that amongst the seven DRASTIC parameters,the unsaturated zone and the aquifer media were the most influencing parameters.In conclustion,the correlation of 25 nitrate concentration values with the final vulnerability map,assessed using the Pearson correlation coefficient,yielded a satisfactory result of R=0.72. 展开更多
关键词 DRASTIC Erbil Iraq groundwater vulnerability assessment NITRATE POLLUTION Sensitivity analysis
下载PDF
The Damaging Effects of Abstracting the Deep Aquifers’Groundwater in Jordan-Quality Constraints
13
作者 Elias Salameh Ghaida Abdallat Taleb Odeh 《Journal of Geoscience and Environment Protection》 2024年第3期250-278,共29页
The deep aquifers in Jordan contain non-renewable and fossil groundwater and their extraction is quasi a mining process, which ends in the depletion of these resources. Although aquifers in the majority of groundwater... The deep aquifers in Jordan contain non-renewable and fossil groundwater and their extraction is quasi a mining process, which ends in the depletion of these resources. Although aquifers in the majority of groundwater basins in Jordan are vertically and horizontally interconnected stratification in different water quality horizons with generally increasing water salinity with the depth is observed. Many officials and planners advocate the extraction of deep salty and brackish water to be desalinated and used in household, industrial, and agricultural uses. In this article, the quality of the groundwater in the different deep aquifers and areas in Jordan is discussed. The results of this study show that the consequences of the deep groundwater exploitation are not restricted to depletion of the deep aquifers but also that the overlying fresh groundwater will, due to vertical and horizontal interconnectedness of the different aquifers, percolate down to replace the extracted deep groundwater. This will cause the down-percolating fresh groundwater to become salinized in the deep saline aquifers, which means that extracting the deep brackish and saline groundwater is not only an emptying process of the deep groundwater but also it is an emptying process of the fresh groundwater overlying them. The results allow to conclude that any extraction of the deep groundwater in areas lying to the north of Ras en Naqab Escarpment will have damaging impacts on the fresh groundwater in the overlying fresh groundwater aquifers. This article strongly advises not to extract the deep brackish and saline groundwater, but to conserve that groundwater as a base supporting the overlying fresh groundwater resources, and that will help in protecting the thermal mineralized water springs used in spas originating from these deep aquifers. The increasing water needs of the country can be covered by the desalination of seawater at Aqaba, which is the only viable option for Jordan at present and in the coming decades. 展开更多
关键词 groundwater Salinity Sources of Salinity Interconnectedness of Aquifers Absurdity of Deep groundwater Exploitation
下载PDF
Hydrogeological and Physico-Chemical Study of the Groundwater of Mitendi South-East in the Commune of Mont-Ngafula around the Kimwenza Quarry (Province of Kinshasa, DR Congo)
14
作者 Jonathan Mayi Nkolomonyi Ivon Ndala Tshiwisa +2 位作者 Hervé Khonde Mbumba Samuel Ingila Asanga Clement N’zau Umba-Di-Mbudi 《Journal of Geoscience and Environment Protection》 2024年第4期96-114,共19页
The exploitation of groundwater by drilling in the Mitendi South-East district constitutes a solution to the water shortage in this peripheral part of the Mont-Ngafula township in Kinshasa, the capital of the DR Congo... The exploitation of groundwater by drilling in the Mitendi South-East district constitutes a solution to the water shortage in this peripheral part of the Mont-Ngafula township in Kinshasa, the capital of the DR Congo. Individuals exploit groundwater in boreholes to serve the population without taking into account certain necessary aspects such as the origin of the groundwater table and the quality which constitute the major problems of this work such as: What is the quantity of water from the recharge of our aquifer? What is the state of the Mitendi South-East aquifer water in relation to some physico-chemical parameters? The cardinal objective of this work is to provide chemical data and trace elements in each analyzed borehole and determine the type of recharge of the underground aquifer. The specific objectives are as follows: analyze the potability of groundwater on a physico-chemical level and their chemical facies, take the geographical coordinates of water samples from the aquifer in each targeted borehole in order to develop the sampling map of the area under study;also check each parameter analyzed in relation to WHO standards. We carried out a general investigation of the study area by carrying out observations, sampling and in-situ measurements of each borehole, as well as the good conservation of the samples taken in a cooler. The various measurements that we took in-situ: pH, electrical conductivity, turbidity, salinity, temperature, and TDS were carried out by using a multi-parameter probe in the laboratory of appropriate methods such as titled-sorting, spectrophotometry, atomic absorption spectrometry, ArcGise and Excel software. With regard to the results from laboratory analysis (physical and chemical analysis), the parameters showed that the standards recommended by the WHO were not respected. We affirm that the water consumed in the Mitendi South-East district in Mont-Ngafula town ship is not drinkable. Since, it can cause several water-borne diseases. It would be better to treat that water before being drunk. . 展开更多
关键词 groundwater Aquifer Physicochemical Parameters Mitendi Kimwenza Quarry
下载PDF
Groundwater recharge via precipitation in the Badain Jaran Desert,China
15
作者 Zhe Wang Li-juan Wang +3 位作者 Jian-mei Shen Zhen-long Nie Le Cao Ling-qun Meng 《Journal of Groundwater Science and Engineering》 2024年第1期109-118,共10页
Precipitation infiltration serves as a significant source of groundwater in the Badain Jaran Desert.To investigate variations in precipitation infiltration within the desert,this study collected data on moisture conte... Precipitation infiltration serves as a significant source of groundwater in the Badain Jaran Desert.To investigate variations in precipitation infiltration within the desert,this study collected data on moisture content and temperature from the vadose zone through in-situ field monitoring.Utilizing these data,a numerical model is employed to explore the mechanism of groundwater recharge via precipitation.The results are as follows:(1)Moisture content and temperature in the shallow vadose zone exhibit significant seasonal variations,with moisture content diminishing with increasing depth;(2)Groundwater recharge via precipitation infiltration initially increases and then decreases with groundwater level depth(GWD).Peak groundwater recharge via precipitation occurs at a GWD of 0.75 m,decreasing to merely 0.012 cm at GWDs exceeding 2 m;(3)Groundwater is no longer susceptible to phreatic water evaporation when the GWD reaches approximately 3.7 m.Therefore,GWD plays a crucial role in governing groundwater recharge via precipitation in the Badain Jaran Desert. 展开更多
关键词 Badain Jaran Desert Vadose zone groundwater recharge In situ monitoring Numerical simulation
下载PDF
Hydrogeochemical Characterization of Aquifer Systems and Surface Water/Groundwater Relations in the Lower Senegal River Valley
16
作者 Abibatou Camara Fatou Diop Ngom +2 位作者 Moctar Diaw Cheikh Tidiane Wade Ibrahima Mall 《Journal of Geoscience and Environment Protection》 2024年第6期232-254,共23页
This study assesses the chemical quality of water resources in the Lower Senegal River valley, based on 35 samples collected in November 2022. Major ion concentrations in surface water and groundwater were analyzed us... This study assesses the chemical quality of water resources in the Lower Senegal River valley, based on 35 samples collected in November 2022. Major ion concentrations in surface water and groundwater were analyzed using classical geochemical interpretation diagrams (Piper, GIBBS, etc.) and multivariate geostatistical analyses, including hierarchical cluster analysis (HCA) and principal component analysis (PCA). The results revealed three types of facies: Ca-Mg-HCO3-type facies, characteristic of poorly mineralized waters such as surface waters and groundwater from dune formations and the alluvial plain close to the hydraulic axis;Na-Cl type facies associated with well waters located in the alluvial plain that tap Inchirian or Nouakchottian shallow reservoirs and Maastrichtian deep borehole waters;and mixed Ca-Cl and Na-HCO3 type facies observed in certain floodplain and dune reservoirs. The results showed a strong correlation between sodium, chlorides, bromides, and electrical conductivity, indicating a significant contribution of these ions to groundwater mineralization. The various sources of water mineralization include mixing processes between surface water or rainwater, or calcite or dolomite dissolution processes (for weakly mineralized waters), basic exchanges or inverse basic exchanges between the aquifer and the water table (for moderately mineralized waters), and evaporation processes, halite dissolution, and paleosalinity during periods of marine transgression and regression (for highly mineralized waters). The study also highlighted the high vulnerability of the alluvial aquifer to pollution from intensive irrigated agriculture, as significant quantities of sulfates and nitrates were measured in some samples. These results also highlight the importance of water quality management in the Lower Senegal Valley, particularly as concerns the protection of the alluvial aquifer against pollution from irrigated agriculture. 展开更多
关键词 Senegal River Valley groundwater POLLUTION Agriculture Alluvial Aquifer
下载PDF
Hydrochemical Characterisation and Assessment of the Level of Contamination of Groundwater Collected by Private Waterworks in the Town of Moundou in the South of Chad
17
作者 Prosper Doumtoudjinodji Elegbede Manou Bernadin +3 位作者 Jean Claude Doumnang Mbaigane Nguérassem Djoueingue Urbain Agnichola Akilou Socohou Amadou 《Journal of Geoscience and Environment Protection》 2024年第1期13-32,共20页
Groundwater is the main source of drinking water for large cities in most African countries. In Moundou, for example, the conventional groundwater supply system is failing. To compensate for this state failure, the po... Groundwater is the main source of drinking water for large cities in most African countries. In Moundou, for example, the conventional groundwater supply system is failing. To compensate for this state failure, the population is building boreholes and wells, most of which tap the surface water table, generally referred to as the “water table”. The aim of this study is to characterize these waters in order to assess their level of contamination and, by extension, the degree of pollution of the water table. Major elements such as: Chloride (Cl<sup>-</sup>), Sulfate (SO<sub>4</sub><sup>2-</sup>), Nitrate (NO<sub>3</sub><sup>-</sup>), Calcium (Ca<sup>2+</sup>), magnesium (Mg<sup>2+</sup>), sodium (Na<sup>+</sup>) and potassium (K<sup>+</sup>) were analysed by Liquid Chromatography and the Bicarbonate ion (HCO<sub>3</sub><sup>-</sup>) was determined by the titrimetric method. The methodology applied is based on a combination of hydrochemical techniques and statistical analysis (PCA and CHA). A sampling campaign was carried out during high-water periods. The results of the physico-chemical analyses show mineralization ranging from 7.29 to 3670 μS/cm, with an average of 487.44 μS/cm. The groundwater studied is generally acidic, with a pH ranging from 3.26 to 6.41. Based on their anions, they are classified into four main hydrochemical facies: chloride and sulphate facies, calcium and magnesium facies, sodium and potassium facies and bicarbonate facies. The various correlations between major ions and statistical analyses have enabled us to identify three hydrogeochemical processes involved in water mineralization. The dominant process is silicate hydrolysis, followed by cation exchange, then anthropogenic input, which influences mineralization by polluting the water. 展开更多
关键词 Drinking Water groundwater Chemical Pollution Moundou Chad
下载PDF
Delineation of groundwater potential zones using remote sensing and Geographic Information Systems(GIS)in Kadaladi region,Southern India
18
作者 Stephen Pitchaimani V Narayanan MSS +2 位作者 Abishek RS Aswin SK Jerin Joe RJ 《Journal of Groundwater Science and Engineering》 2024年第2期147-160,共14页
The primary objective of this research is to delineate potential groundwater recharge zones in the Kadaladi taluk of Ramanathapuram,Tamil Nadu,India,using a combination of remote sensing and Geographic Information Sys... The primary objective of this research is to delineate potential groundwater recharge zones in the Kadaladi taluk of Ramanathapuram,Tamil Nadu,India,using a combination of remote sensing and Geographic Information Systems(GIS)with the Analytical Hierarchical Process(AHP).Various factors such as geology,geomorphology,soil,drainage,density,lineament density,slope,rainfall were analyzed at a specific scale.Thematic layers were evaluated for quality and relevance using Saaty's scale,and then inte-grated using the weighted linear combination technique.The weights assigned to each layer and features were standardized using AHP and the Eigen vector technique,resulting in the final groundwater potential zone map.The AHP method was used to normalize the scores following the assignment of weights to each criterion or factor based on Saaty's 9-point scale.Pair-wise matrix analysis was utilized to calculate the geometric mean and normalized weight for various parameters.The groundwater recharge potential zone map was created by mathematically overlaying the normalized weighted layers.Thematic layers indicating major elements influencing groundwater occurrence and recharge were derived from satellite images.2 Results indicate that approximately 21.8 km of the total area exhibits high potential for groundwater recharge.Groundwater recharge is viable in areas with moderate slopes,particularly in the central and southeastern regions. 展开更多
关键词 groundwater Satellite image Remote sensing GIS techniques Analytical Hierarchy Process(AHP)
下载PDF
Arsenic and fluoride co-enrichment of groundwater in the loess areas and associated human health risks:A case study of Dali County in the Guanzhong Basin
19
作者 Rui-ping Liu Fei Liu +5 位作者 Hua-qing Chen Yu-ting Yang Hua Zhu You-ning Xu Jian-gang Jiao Refaey M El-Wardany 《China Geology》 CAS CSCD 2024年第3期445-459,共15页
This study aims to reveal the occurrence and origin of typical groundwater with high arsenic and fluoride concentrations in the loess area of the Guanzhong Basin—a Neogene faulted basin.Key findings are as follows:(1... This study aims to reveal the occurrence and origin of typical groundwater with high arsenic and fluoride concentrations in the loess area of the Guanzhong Basin—a Neogene faulted basin.Key findings are as follows:(1)Groundwater samples with high arsenic and fluoride concentrations collected from the loess area and the terraces of the Weihe River accounted for 26%and 30%,respectively,of the total samples,with primary hydrochemical type identified as HCO_(3)-Na.The karst and sand areas exhibit relatively high groundwater quality,serving as preferred sources for water supply.It is recommended that local governments fully harness groundwater in these areas;(2)groundwater with high arsenic and fluoride concentrations in the loess area and the alluvial plain of rivers in Dali County is primarily distributed within the Guanzhong Basin,which represents the drainage zone of groundwater;(3)arsenic and fluoride in groundwater originate principally from natural and anthropogenic sources;(4)the human health risk assessments reveal that long-term intake of groundwater with high arsenic and fluoride concentrations pose cancer or non-cancer risks,which are more serious to kids compared to adults.This study provides a theoretical basis for the prevention and treatment of groundwater with high arsenic and fluoride concentrations in loess areas. 展开更多
关键词 ARSENIC FLUORIDE groundwater Cancer risk Kid and adult Human health risk assessment Hydrogeological survey engineering Environmental geological survey engineering Loess areas
下载PDF
Pollution source identification methods and remediation technologies of groundwater: A review
20
作者 Ya-ci Liu Yu-hong Fei +2 位作者 Ya-song Li Xi-lin Bao Peng-wei Zhang 《China Geology》 CAS CSCD 2024年第1期125-137,共13页
Groundwater is an important source of drinking water.Groundwater pollution severely endangers drinking water safety and sustainable social development.In the case of groundwater pollution,the top priority is to identi... Groundwater is an important source of drinking water.Groundwater pollution severely endangers drinking water safety and sustainable social development.In the case of groundwater pollution,the top priority is to identify pollution sources,and accurate information on pollution sources is the premise of efficient remediation.Then,an appropriate pollution remediation scheme should be developed according to information on pollution sources,site conditions,and economic costs.The methods for identifying pollution sources mainly include geophysical exploration,geochemistry,isotopic tracing,and numerical modeling.Among these identification methods,only the numerical modeling can recognize various information on pollution sources,while other methods can only identify a certain aspect of pollution sources.The remediation technologies of groundwater can be divided into in-situ and ex-situ remediation technologies according to the remediation location.The in-situ remediation technologies enjoy low costs and a wide remediation range,but their remediation performance is prone to be affected by environmental conditions and cause secondary pollution.The ex-situ remediation technologies boast high remediation efficiency,high processing capacity,and high treatment concentration but suffer high costs.Different methods for pollution source identification and remediation technologies are applicable to different conditions.To achieve the expected identification and remediation results,it is feasible to combine several methods and technologies according to the actual hydrogeological conditions of contaminated sites and the nature of pollutants.Additionally,detailed knowledge about the hydrogeological conditions and stratigraphic structure of the contaminated site is the basis of all work regardless of the adopted identification methods or remediation technologies. 展开更多
关键词 groundwater pollution Identification of pollution sources Geophysical exploration identification Geochemistry identification Isotopic tracing Numerical modeling Remediation technology Hydrogeological conditions Hydrogeological survey engineering
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部