VANET security is an evolving topic in mobile networks, as providing a secure layer of communications in such a dynamic and fast network is a challenge. The work presented in this article was conducted in order to ver...VANET security is an evolving topic in mobile networks, as providing a secure layer of communications in such a dynamic and fast network is a challenge. The work presented in this article was conducted in order to verify and evaluate the feasibility of applying group broadcast cryptography to the VANET environment, as an attempt to gain performance by decreasing the number of messages in the wireless network. Group broadcast is a symmetric/asymmetric hybrid cryptography method, aiming to merge the best of the two approaches without their major drawbacks. Simulations were set-up and run using the ONE simulator, comparing the usage of the three different cryptography approaches for VANETs. Results consider the number of connections, the number messages and the number of revocation messages per day. The resulting data promises that group broadcast encryption can be used to simplify the encrypting phase, reduce required storage and significantly decrease the number of messages in the network.展开更多
A quantum group signature(QGS) scheme is proposed on the basis of an improved quantum chaotic encryption algorithm using the quantum one-time pad with a chaotic operation string. It involves a small-scale quantum comp...A quantum group signature(QGS) scheme is proposed on the basis of an improved quantum chaotic encryption algorithm using the quantum one-time pad with a chaotic operation string. It involves a small-scale quantum computation network in three phases, i.e. initializing phase, signing phase and verifying phase. In the scheme, a member of the group signs the message on behalf of the group while the receiver verifies the signature's validity with the aid of the trusty group manager who plays a crucial role when a possible dispute arises. Analysis result shows that the signature can neither be forged nor disavowed by any malicious attackers.展开更多
文摘VANET security is an evolving topic in mobile networks, as providing a secure layer of communications in such a dynamic and fast network is a challenge. The work presented in this article was conducted in order to verify and evaluate the feasibility of applying group broadcast cryptography to the VANET environment, as an attempt to gain performance by decreasing the number of messages in the wireless network. Group broadcast is a symmetric/asymmetric hybrid cryptography method, aiming to merge the best of the two approaches without their major drawbacks. Simulations were set-up and run using the ONE simulator, comparing the usage of the three different cryptography approaches for VANETs. Results consider the number of connections, the number messages and the number of revocation messages per day. The resulting data promises that group broadcast encryption can be used to simplify the encrypting phase, reduce required storage and significantly decrease the number of messages in the network.
基金Project(61379057)supported by the National Natural Science Foundation of ChinaProject supported by the Construct Program of the Key Discipline in Hunan University of Arts and Science,China+1 种基金Project(2012BS01)supported by Science Technology Research and Development Projects of Changde,ChinaProject supported by Science and the MEST2012-002521,NRF,Korea
文摘A quantum group signature(QGS) scheme is proposed on the basis of an improved quantum chaotic encryption algorithm using the quantum one-time pad with a chaotic operation string. It involves a small-scale quantum computation network in three phases, i.e. initializing phase, signing phase and verifying phase. In the scheme, a member of the group signs the message on behalf of the group while the receiver verifies the signature's validity with the aid of the trusty group manager who plays a crucial role when a possible dispute arises. Analysis result shows that the signature can neither be forged nor disavowed by any malicious attackers.