By taking the Yong River for example in this paper, based on the multiple measured data during 1957 to 2009, the change process of runoff, tide feature, tidal wave, tidal influx and sediment transport are analyzed. Th...By taking the Yong River for example in this paper, based on the multiple measured data during 1957 to 2009, the change process of runoff, tide feature, tidal wave, tidal influx and sediment transport are analyzed. Then a mathematical model is used to reveal the influence mechanism on hydrodynamic characteristics and sediment transport of the wading engineering groups such as a tide gate, a breakwater, reservoirs, bridges and wharves, which were built in different periods. The results showed the hydrodynamic characteristics and sediment transport of the Yong River changed obviously due to the wading engineering groups. The tide gate induced deformation of the tidal wave, obvious reduction of the tidal influx and weakness of the tidal dynamic, decrease of the sediment yield of flood and ebb tide and channel deposition. The breakwater blocked estuarine entrances, resulting in the change of the tidal current and the reduction of the tidal influx in the estuarine area. The large-scale reservoirs gradually made the decrease of the Yong River runoff. The bridge and wharf groups took up cross-section areas, the cumulative affection of which caused the increase of tidal level in the tidal river.展开更多
Design and synthesis of superior cost-effective non-fullerene acceptors(NFAs)are still big challenges for facilitating the commercialization of organic solar cells(OSCs),yet to be realized.Herein,two medium bandgap fu...Design and synthesis of superior cost-effective non-fullerene acceptors(NFAs)are still big challenges for facilitating the commercialization of organic solar cells(OSCs),yet to be realized.Herein,two medium bandgap fully non-fused ring electron acceptors(NFREAs,medium bandgap,i,e.,1,3-1,8 eV),namely PTR-2Cl and PTR-4Cl are synthesized with only four steps by using intramolecular noncovalent interaction central core,structured alkyl side chain orientation linking units and flanking with different electron-withdrawing end group.Among them,PTR-4C1 exhibits increased average electrostatic potential(ESP)difference with polymer donor,enhanced crystallinity and compactπ-πstacking compared with the control molecule PTR-2CI.As a result,the PTR-4Cl-based OSC achieved an impressive power conversion efficiency(PCE)of 14.72%,with a much higher open-circuit voltage(V_(OC))of 0.953 V and significantly improved fill factor(FF)of 0.758,demonstrating one of the best acceptor material in the top-performing fully NFREA-based OSCs with both high PCE and V_(OC).Notably,PTR-4Cl-based cells maintain a good T_80lifetime of its initial PCE after over 936 h under a continuous thermal annealing treatment and over1300 h T_(80)lifetime without encapsulation.This work provides a cost-effective design strategy for NFREAs on obtaining high V_(OC),efficient exciton dissociation,and ordered molecular packing and thus high-efficiency and stable OSCs.展开更多
The Beijing Diesel Engine Group Corporation I/E Co. is a subsidiary company under the Beijing Diesel Engine Group Corporation (BDEGC), a foreign window for the enterprise. The BDEGC is the nation’s largest specialize...The Beijing Diesel Engine Group Corporation I/E Co. is a subsidiary company under the Beijing Diesel Engine Group Corporation (BDEGC), a foreign window for the enterprise. The BDEGC is the nation’s largest specialized diesel engine production factory, a super large enterprise at state level. Its main products include six series of motors and the 1040 series light trucks, 6400 and 6401 wagon cars, agricultural self-discharging semitrailers, and light-duty pilothouses and covers. The power of annual diesel engine output has reached 40 million KW, with the products’ coverage rate on the market ranking in a leading position among the same trade nationwide. Since the 1980s, the BDEGC has exported indefinite quantities of展开更多
Founded in 1913, the Changzhou Die-sel Engine Factory has a long historyof more than 80 years. In May 1994,it was transformed into a holding companyby issuing shares. Now, as a national first-class enterprise and a sp...Founded in 1913, the Changzhou Die-sel Engine Factory has a long historyof more than 80 years. In May 1994,it was transformed into a holding companyby issuing shares. Now, as a national first-class enterprise and a specialized productionbase for medium-to-small power diesel enginesunder the Ministry of the Machine-BuildingIndustry, it has been listed as one of the na-tional 500 largest industrial enterprises展开更多
The Beijing Diesel Engine Group is a large trans-regional, transdepartmental and trans-industrial conglomerate with large, key enterprises as its main force and diesel engines as its mainstay. It manages diversificati...The Beijing Diesel Engine Group is a large trans-regional, transdepartmental and trans-industrial conglomerate with large, key enterprises as its main force and diesel engines as its mainstay. It manages diversification integrating technology, industry, trade and scientific research. It is formed of a展开更多
For non-fullerene acceptors(NFAs)with linear A_(2)-A_(1)-D-A_(1)-A_(2) backbone,there are three kinds of possible intermolecular interaction,A_(1)-A_(1),A_(1)-A_(2) and A_(2)-A_(2) stacking.Hence,it is a huge challeng...For non-fullerene acceptors(NFAs)with linear A_(2)-A_(1)-D-A_(1)-A_(2) backbone,there are three kinds of possible intermolecular interaction,A_(1)-A_(1),A_(1)-A_(2) and A_(2)-A_(2) stacking.Hence,it is a huge challenge to control this interaction and investigate the effect of intermolecular stacking model on the photovoltaic performance.Here,we adopt a feasible strategy,by utilizing different substituent groups on terminal A2 unit of dicyanomethylene rhodanine(RCN),to modulate this stacking model.According to theoretical calculation results,the molecule BTA3 with ethyl substituent packs via heterogeneous interaction between A_(2) and A_(1) unit in neighboring molecules.Surprisingly,the benzyl group can effectively transform the aggregation of BTA5 into homogeneous packing of A_(2)-A_(2) model,which might be driven by the strong interaction between benzyl and A1(benzotriazole)unit.However,different with benzyl,phenyl end group impedes the intermolecular interaction of BTA4 due to the large steric hindrance.When using a BTA-based D-π-A polymer J52-F as donor according to“Same-A-Strategy”,BTA3-5 could achieve ultrahigh open-circuit voltage(VOC)of 1.17–1.21 V.Finally,BTA5 with benzyl groups realized an improved power conversion efficiency(PCE)of 11.27%,obviously higher than that of BTA3(PCE=9.04%)and BTA4(PCE=5.61%).It is also worth noting that the same trend can be found when using other four classic p-type polymers of P3HT,PTB7,PTB7-Th and PBDB-T.This work not only investigates the intermolecular interaction of A_(2)-A_(1)-D-A_(1)-A_(2) type NFAs for the first time,but also provides a straightforward and universal method to change the interaction model and improve the photovoltaic performance.展开更多
基金financially supported by the National Science Foundation for Distinguished Young Scholars of China(Grant No.51125034)the National Natural Science Foundation of China(Grant Nos.51279046 and 50909037)the Fundamental Research Funds for the Central Universities(Grant No.2010B01114)
文摘By taking the Yong River for example in this paper, based on the multiple measured data during 1957 to 2009, the change process of runoff, tide feature, tidal wave, tidal influx and sediment transport are analyzed. Then a mathematical model is used to reveal the influence mechanism on hydrodynamic characteristics and sediment transport of the wading engineering groups such as a tide gate, a breakwater, reservoirs, bridges and wharves, which were built in different periods. The results showed the hydrodynamic characteristics and sediment transport of the Yong River changed obviously due to the wading engineering groups. The tide gate induced deformation of the tidal wave, obvious reduction of the tidal influx and weakness of the tidal dynamic, decrease of the sediment yield of flood and ebb tide and channel deposition. The breakwater blocked estuarine entrances, resulting in the change of the tidal current and the reduction of the tidal influx in the estuarine area. The large-scale reservoirs gradually made the decrease of the Yong River runoff. The bridge and wharf groups took up cross-section areas, the cumulative affection of which caused the increase of tidal level in the tidal river.
基金the financial support by Hong Kong Scholar program(XJ2021-038)Young Talent Fund of Xi’an Association for Science and Technology(959202313080)+6 种基金the Natural Science Foundation Research Project of Shaanxi Province(2022JM-269)the Postgraduate Innovation and Practical Ability Training Program of Xi’an Shiyou University(YCS21212144)the National Natural Science Foundation of China(52103221,52172048,12175298)the Shandong Provincial Natural Science Foundation(ZR2021QB179,ZR2021QB024,ZR2021ZD06)the Guangdong Natural Science Foundation of China(2023A1515012323,2023A1515010943)the National Key Research and Development Program of China(2022YFB4200400)funded by MOSTthe Fundamental Research Funds of Shandong University。
文摘Design and synthesis of superior cost-effective non-fullerene acceptors(NFAs)are still big challenges for facilitating the commercialization of organic solar cells(OSCs),yet to be realized.Herein,two medium bandgap fully non-fused ring electron acceptors(NFREAs,medium bandgap,i,e.,1,3-1,8 eV),namely PTR-2Cl and PTR-4Cl are synthesized with only four steps by using intramolecular noncovalent interaction central core,structured alkyl side chain orientation linking units and flanking with different electron-withdrawing end group.Among them,PTR-4C1 exhibits increased average electrostatic potential(ESP)difference with polymer donor,enhanced crystallinity and compactπ-πstacking compared with the control molecule PTR-2CI.As a result,the PTR-4Cl-based OSC achieved an impressive power conversion efficiency(PCE)of 14.72%,with a much higher open-circuit voltage(V_(OC))of 0.953 V and significantly improved fill factor(FF)of 0.758,demonstrating one of the best acceptor material in the top-performing fully NFREA-based OSCs with both high PCE and V_(OC).Notably,PTR-4Cl-based cells maintain a good T_80lifetime of its initial PCE after over 936 h under a continuous thermal annealing treatment and over1300 h T_(80)lifetime without encapsulation.This work provides a cost-effective design strategy for NFREAs on obtaining high V_(OC),efficient exciton dissociation,and ordered molecular packing and thus high-efficiency and stable OSCs.
文摘The Beijing Diesel Engine Group Corporation I/E Co. is a subsidiary company under the Beijing Diesel Engine Group Corporation (BDEGC), a foreign window for the enterprise. The BDEGC is the nation’s largest specialized diesel engine production factory, a super large enterprise at state level. Its main products include six series of motors and the 1040 series light trucks, 6400 and 6401 wagon cars, agricultural self-discharging semitrailers, and light-duty pilothouses and covers. The power of annual diesel engine output has reached 40 million KW, with the products’ coverage rate on the market ranking in a leading position among the same trade nationwide. Since the 1980s, the BDEGC has exported indefinite quantities of
文摘Founded in 1913, the Changzhou Die-sel Engine Factory has a long historyof more than 80 years. In May 1994,it was transformed into a holding companyby issuing shares. Now, as a national first-class enterprise and a specialized productionbase for medium-to-small power diesel enginesunder the Ministry of the Machine-BuildingIndustry, it has been listed as one of the na-tional 500 largest industrial enterprises
文摘The Beijing Diesel Engine Group is a large trans-regional, transdepartmental and trans-industrial conglomerate with large, key enterprises as its main force and diesel engines as its mainstay. It manages diversification integrating technology, industry, trade and scientific research. It is formed of a
基金This work was supported by the National Natural Science Foundation of China(51773046,51673048,21602040)the Strategic Priority Research Program of Chinese Academy of Sciences(XDB36000000)+1 种基金the Key Research Program of Frontier Sciences,Chinese Academy of Sciences(QYZDBSSW-SLH033)the National Key Research and Development Program of China(2017YFA0206600).
文摘For non-fullerene acceptors(NFAs)with linear A_(2)-A_(1)-D-A_(1)-A_(2) backbone,there are three kinds of possible intermolecular interaction,A_(1)-A_(1),A_(1)-A_(2) and A_(2)-A_(2) stacking.Hence,it is a huge challenge to control this interaction and investigate the effect of intermolecular stacking model on the photovoltaic performance.Here,we adopt a feasible strategy,by utilizing different substituent groups on terminal A2 unit of dicyanomethylene rhodanine(RCN),to modulate this stacking model.According to theoretical calculation results,the molecule BTA3 with ethyl substituent packs via heterogeneous interaction between A_(2) and A_(1) unit in neighboring molecules.Surprisingly,the benzyl group can effectively transform the aggregation of BTA5 into homogeneous packing of A_(2)-A_(2) model,which might be driven by the strong interaction between benzyl and A1(benzotriazole)unit.However,different with benzyl,phenyl end group impedes the intermolecular interaction of BTA4 due to the large steric hindrance.When using a BTA-based D-π-A polymer J52-F as donor according to“Same-A-Strategy”,BTA3-5 could achieve ultrahigh open-circuit voltage(VOC)of 1.17–1.21 V.Finally,BTA5 with benzyl groups realized an improved power conversion efficiency(PCE)of 11.27%,obviously higher than that of BTA3(PCE=9.04%)and BTA4(PCE=5.61%).It is also worth noting that the same trend can be found when using other four classic p-type polymers of P3HT,PTB7,PTB7-Th and PBDB-T.This work not only investigates the intermolecular interaction of A_(2)-A_(1)-D-A_(1)-A_(2) type NFAs for the first time,but also provides a straightforward and universal method to change the interaction model and improve the photovoltaic performance.