In this paper,we give transcendence bases of the rational invariants fields of the generalized classical groups and their subgroups B,N and T,and we also compute the orders of them.Furthermore,we give explicit generat...In this paper,we give transcendence bases of the rational invariants fields of the generalized classical groups and their subgroups B,N and T,and we also compute the orders of them.Furthermore,we give explicit generators for the rational invariants fields of the Borel subgroup and the Neron-Severi subgroup of the general linear group.展开更多
In this paper, we prove that if p, q are distinct primes, (p,q)≡(1,7) (mod 12) and Legendres symbol pq=1 , then the equation 1+p a=2 bq c+2 dp eq f has only solutions of the form (a,b,c,d,e,f)=...In this paper, we prove that if p, q are distinct primes, (p,q)≡(1,7) (mod 12) and Legendres symbol pq=1 , then the equation 1+p a=2 bq c+2 dp eq f has only solutions of the form (a,b,c,d,e,f)=(t,0,0,0,t,0), where t is a non negative integer. We also give all solutions of a kind of generalized Ramanujan Nagell equations by using the theories of imaginary quadratic field and Pells equation.展开更多
Based on a general theory of descendant trees of finite p-groups and the virtual periodicity isomorphisms between the branches of a coclass subtree, the behavior of algebraic invariants of the tree vertices and their ...Based on a general theory of descendant trees of finite p-groups and the virtual periodicity isomorphisms between the branches of a coclass subtree, the behavior of algebraic invariants of the tree vertices and their automorphism groups under these isomorphisms is described with simple transformation laws. For the tree of finite 3-groups with elementary bicyclic commutator qu-otient, the information content of each coclass subtree with metabelian main-line is shown to be finite. As a striking novelty in this paper, evidence is provided of co-periodicity isomorphisms between coclass forests which reduce the information content of the entire metabelian skeleton and a significant part of non-metabelian vertices to a finite amount of data.展开更多
In this paper,the automorphism group of G is determined,where G is a 4 × 4 upper unitriangular matrix group over Z.Let K be the subgroup of AutG consisting of all elements of AutG which act trivially on G/G,G /ζ...In this paper,the automorphism group of G is determined,where G is a 4 × 4 upper unitriangular matrix group over Z.Let K be the subgroup of AutG consisting of all elements of AutG which act trivially on G/G,G /ζG and ζG,then (i) InnG ■ K ■ AutG;(ii) AutG/K≌=G_1×D_8×Z_2,where G_1=(a,b,c|a^4=b^2=c^2=1,a^b=a^(-1),[a,c]= [b,c]=1 ;(iii) K/Inn G≌=Z×Z×Z.展开更多
This paper investigates the approach of presenting groups by generators and relations from an original angle. It starts by interpreting this familiar concept with the novel notion of “formal words” created by juxtap...This paper investigates the approach of presenting groups by generators and relations from an original angle. It starts by interpreting this familiar concept with the novel notion of “formal words” created by juxtaposing letters in a set. Taking that as basis, several fundamental results related to free groups, such as Dyck’s Theorem, are proven. Then, the paper highlights three creative applications of the concept in classifying finite groups of a fixed order, representing all dihedral groups geometrically, and analyzing knots topologically. All three applications are of considerable significance in their respective topic areas and serve to illustrate the advantages and certain limitations of the approach flexibly and comprehensively.展开更多
Let p be a prime. For any finite p-group G, the deep transfers T H,G ' : H / H ' → G ' / G " from the maximal subgroups H of index (G:H) = p in G to the derived subgroup G ' are introduced as an ...Let p be a prime. For any finite p-group G, the deep transfers T H,G ' : H / H ' → G ' / G " from the maximal subgroups H of index (G:H) = p in G to the derived subgroup G ' are introduced as an innovative tool for identifying G uniquely by means of the family of kernels ùd(G) =(ker(T H,G ')) (G: H) = p. For all finite 3-groups G of coclass cc(G) = 1, the family ùd(G) is determined explicitly. The results are applied to the Galois groups G =Gal(F3 (∞)/ F) of the Hilbert 3-class towers of all real quadratic fields F = Q(√d) with fundamental discriminants d > 1, 3-class group Cl3(F) □ C3 × C3, and total 3-principalization in each of their four unramified cyclic cubic extensions E/F. A systematic statistical evaluation is given for the complete range 1 d 7, and a few exceptional cases are pointed out for 1 d 8.展开更多
Recent examples of periodic bifurcations in descendant trees of finite p-groups with ?are used to show that the possible p-class tower groups G of certain multiquadratic fields K with p- class group of type (2,2,2) , ...Recent examples of periodic bifurcations in descendant trees of finite p-groups with ?are used to show that the possible p-class tower groups G of certain multiquadratic fields K with p- class group of type (2,2,2) , resp. (3,3), form periodic sequences in the descendant tree of the elementary Abelian root , resp. . The particular vertex of the periodic sequence which occurs as the p-class tower group G of an assigned field K is determined uniquely by the p-class number of a quadratic, resp. cubic, auxiliary field k, associated unambiguously to K. Consequently, the hard problem of identifying the p-class tower group G is reduced to an easy computation of low degree arithmetical invariants.展开更多
In this paper, the automorphism group of a generalized extraspecial p-group G is determined, where p is a prime number. Assume that |G| = p 2n+m and |ζG| = p m , where n 1 and m 2. (1) When p is odd, let Aut G G = {...In this paper, the automorphism group of a generalized extraspecial p-group G is determined, where p is a prime number. Assume that |G| = p 2n+m and |ζG| = p m , where n 1 and m 2. (1) When p is odd, let Aut G G = {α∈ AutG | α acts trivially on G }. Then Aut G G⊿AutG and AutG/Aut G G≌Z p-1 . Furthermore, (i) If G is of exponent p m , then Aut G G/InnG≌Sp(2n, p) × Z p m-1 . (ii) If G is of exponent p m+1 , then Aut G G/InnG≌ (K Sp(2n-2, p))×Z p m-1 , where K is an extraspecial p-group of order p 2n-1 . In particular, Aut G G/InnG≌ Z p × Z p m-1 when n = 1. (2) When p = 2, then, (i) If G is of exponent 2 m , then AutG≌ Sp(2n, 2) × Z 2 × Z 2 m-2 . In particular, when n = 1, |AutG| = 3 · 2 m+2 . None of the Sylow subgroups of AutG is normal, and each of the Sylow 2-subgroups of AutG is isomorphic to H K, where H = Z 2 × Z 2 × Z 2 × Z 2 m-2 , K = Z 2 . (ii) If G is of exponent 2 m+1 , then AutG≌ (I Sp(2n-2, 2)) × Z 2 × Z 2 m-2 , where I is an elementary abelian 2-group of order 2 2n-1 . In particular, when n = 1, |AutG| = 2 m+2 and AutG≌ H K, where H = Z 2 × Z 2 × Z 2 m-1 , K = Z 2 .展开更多
Let Fq be a finite field of odd characteristic, m, v the integers with 1 ≤ m ≤ v and K a 2v × 2v nonsingular alternate matrix over Fq. In this paper, the generalized symplectic graph GSp2v(q, m) relative to K...Let Fq be a finite field of odd characteristic, m, v the integers with 1 ≤ m ≤ v and K a 2v × 2v nonsingular alternate matrix over Fq. In this paper, the generalized symplectic graph GSp2v(q, m) relative to K over Fq is introduced. It is the graph with m-dimensional totally isotropic subspaces of the 2v-dimensional symplectic space Fq(2v) as its vertices and two vertices P and Q are adjacent if and only if the rank of PKQw is 1 and the dimension of P ∩ Q is m - 1. It is proved that the full automorphism group of the graph GSp2v(q, m) is the projective semilinear symplectic group P∑p(2v, q).展开更多
Let A be a subgroup of a finite group G. We say that A is a generalized CAP-subgroup of G if for each chief factor H/K of G either A avoids H/K or the following holds:(1) If H/K is non-abelian, then|H :(A ∩H)K | is ...Let A be a subgroup of a finite group G. We say that A is a generalized CAP-subgroup of G if for each chief factor H/K of G either A avoids H/K or the following holds:(1) If H/K is non-abelian, then|H :(A ∩H)K | is a p′-number for every p ∈π((A ∩H)K/K);(2) If H/K is a p-group, then |G : NG(K(A ∩H))| is a p-number. In this paper, we use the generalized CAP-subgroup to characterize the structure of finite groups.Some new characterizations of the hypercyclically embedded subgroups of a finite group are obtained and a series of known results are generalized.展开更多
In this paper, we show that certain generalized free products of nilpotent-by-finite groups are subgroup separable when the amalgamated subgroup is × D where D is in the center of both factors.
Let D be a generalized dihedral group and Autcol(D) its Coleman automorphism group. Denote by Outcol(D) the quotient group of Autcol(D) by Inn(D), where Inn(D) is the inner automorphism group of D. It is pro...Let D be a generalized dihedral group and Autcol(D) its Coleman automorphism group. Denote by Outcol(D) the quotient group of Autcol(D) by Inn(D), where Inn(D) is the inner automorphism group of D. It is proved that either Outcol(D) = i or Outcol(D) is an elementary abelian 2-group whose order is completely determined by the cardinality of π(D). Furthermore, a necessary and sufficient condition for Outcol(D) = 1 is obtained. In addition, whenever Outcol(D) ≠ 1, it is proved that Autcol(D) is a split extension of Inn(D) by an elementary abelian 2-group for which an explicit description is given.展开更多
The automorphism group of G is determined, where G is a nonabelian p-group given by a central extension as 1→Zpm→G→Zp×…×Zp→1 such that its derived subgroup has order p.
The automorphism group of a class of nilpotent groups with infinite cyclic derived subgroups is determined. Let G be the direct product of a generalized extraspecial E-group E and a free abelian group A with rank m, w...The automorphism group of a class of nilpotent groups with infinite cyclic derived subgroups is determined. Let G be the direct product of a generalized extraspecial E-group E and a free abelian group A with rank m, where E={{1 kα1 kα2…kαn aα+1 0 1 0 … 0 αn+2 0 0 0 … 1 α2n+1 0 0 0 …0 1}}αi∈Z,i=1,2,…,2n+1},where k is a positive integer. Let AutG'G be the normal subgroup of AutG consisting of all elements of AutG which act trivially on the derived subgroup G' of G, and Autc G/ζG,ζGG be the normal subgroup of AutG consisting of all central automorphisms of G which also act trivially on the center ζG of G. Then (i) The extension →AutG'G→AutG→AutG'→1 is split.(ii)AutG'G/AutG/ζG,ζGG≈Sp(2n,Z)×(GL(m,Z)×(Z)m),(iii)Aut GζG,ζGG/InnG≈(Zk)2n+(Z)2nm.展开更多
Let H be a subgroup of a group G. Then H is said to be S-quasinormal in G if HP = PH for every Sylow subgroup P of G; H is said to be S-quasinormally embedded in G if a Sylow p-subgroup of H is also a Sylow p-subgroup...Let H be a subgroup of a group G. Then H is said to be S-quasinormal in G if HP = PH for every Sylow subgroup P of G; H is said to be S-quasinormally embedded in G if a Sylow p-subgroup of H is also a Sylow p-subgroup of some S-quasinormal subgroup of G for each prime p dividing the order of H. In this paper, we say that H is weakly S-embedded in G if G has a normal subgroup T such that HT is an S-quasinormal subgroup of G and H VIT ≤ HSE, where HSE denotes the subgroup of H generated by all those subgroups of H which are S-quasinormally embedded in G. Some results about the influence of weakly S-embedded subgroups on the structure of finite groups are given.展开更多
In this paper we give a characterization for certain HNN extensions oi suogroup separable groups with normal associated subgroups to be weakly potent. We then apply our result to show that certain HNN extensions of fi...In this paper we give a characterization for certain HNN extensions oi suogroup separable groups with normal associated subgroups to be weakly potent. We then apply our result to show that certain HNN extensions of finitely generated nilpotent groups with central associated subgroups are weakly potent.展开更多
Grossman first showed that outer automorphism groups of 1-relator groups given by orientable surface groups are residually finite,whence mapping class groups of orientable surfaces are residually finite.Allenby,Kim an...Grossman first showed that outer automorphism groups of 1-relator groups given by orientable surface groups are residually finite,whence mapping class groups of orientable surfaces are residually finite.Allenby,Kim and Tang showed that outer automorphism groups of cyclically pinched 1-relator groups are residually finite,whence mapping class groups of orientable and non-orientable surfaces are residually finite.In this paper we show that outer automorphism groups of certain conjugacy separable 1-relator groups are residually finite.展开更多
文摘In this paper,we give transcendence bases of the rational invariants fields of the generalized classical groups and their subgroups B,N and T,and we also compute the orders of them.Furthermore,we give explicit generators for the rational invariants fields of the Borel subgroup and the Neron-Severi subgroup of the general linear group.
文摘In this paper, we prove that if p, q are distinct primes, (p,q)≡(1,7) (mod 12) and Legendres symbol pq=1 , then the equation 1+p a=2 bq c+2 dp eq f has only solutions of the form (a,b,c,d,e,f)=(t,0,0,0,t,0), where t is a non negative integer. We also give all solutions of a kind of generalized Ramanujan Nagell equations by using the theories of imaginary quadratic field and Pells equation.
文摘Based on a general theory of descendant trees of finite p-groups and the virtual periodicity isomorphisms between the branches of a coclass subtree, the behavior of algebraic invariants of the tree vertices and their automorphism groups under these isomorphisms is described with simple transformation laws. For the tree of finite 3-groups with elementary bicyclic commutator qu-otient, the information content of each coclass subtree with metabelian main-line is shown to be finite. As a striking novelty in this paper, evidence is provided of co-periodicity isomorphisms between coclass forests which reduce the information content of the entire metabelian skeleton and a significant part of non-metabelian vertices to a finite amount of data.
基金Supported by the Tianyuan Fund for Mathematics of NSFC(11126273)Supported by the NSF of Henan Educational Committee(2011B110011)Supported by the Doctor Foundation of Henan University of Technology(2009BS029)
文摘In this paper,the automorphism group of G is determined,where G is a 4 × 4 upper unitriangular matrix group over Z.Let K be the subgroup of AutG consisting of all elements of AutG which act trivially on G/G,G /ζG and ζG,then (i) InnG ■ K ■ AutG;(ii) AutG/K≌=G_1×D_8×Z_2,where G_1=(a,b,c|a^4=b^2=c^2=1,a^b=a^(-1),[a,c]= [b,c]=1 ;(iii) K/Inn G≌=Z×Z×Z.
文摘This paper investigates the approach of presenting groups by generators and relations from an original angle. It starts by interpreting this familiar concept with the novel notion of “formal words” created by juxtaposing letters in a set. Taking that as basis, several fundamental results related to free groups, such as Dyck’s Theorem, are proven. Then, the paper highlights three creative applications of the concept in classifying finite groups of a fixed order, representing all dihedral groups geometrically, and analyzing knots topologically. All three applications are of considerable significance in their respective topic areas and serve to illustrate the advantages and certain limitations of the approach flexibly and comprehensively.
文摘Let p be a prime. For any finite p-group G, the deep transfers T H,G ' : H / H ' → G ' / G " from the maximal subgroups H of index (G:H) = p in G to the derived subgroup G ' are introduced as an innovative tool for identifying G uniquely by means of the family of kernels ùd(G) =(ker(T H,G ')) (G: H) = p. For all finite 3-groups G of coclass cc(G) = 1, the family ùd(G) is determined explicitly. The results are applied to the Galois groups G =Gal(F3 (∞)/ F) of the Hilbert 3-class towers of all real quadratic fields F = Q(√d) with fundamental discriminants d > 1, 3-class group Cl3(F) □ C3 × C3, and total 3-principalization in each of their four unramified cyclic cubic extensions E/F. A systematic statistical evaluation is given for the complete range 1 d 7, and a few exceptional cases are pointed out for 1 d 8.
文摘Recent examples of periodic bifurcations in descendant trees of finite p-groups with ?are used to show that the possible p-class tower groups G of certain multiquadratic fields K with p- class group of type (2,2,2) , resp. (3,3), form periodic sequences in the descendant tree of the elementary Abelian root , resp. . The particular vertex of the periodic sequence which occurs as the p-class tower group G of an assigned field K is determined uniquely by the p-class number of a quadratic, resp. cubic, auxiliary field k, associated unambiguously to K. Consequently, the hard problem of identifying the p-class tower group G is reduced to an easy computation of low degree arithmetical invariants.
基金supported by National Natural Science Foundation of China (Grant No.10671058)Doctor Foundation of Henan University of Technology (Grant No. 2009BS029)
文摘In this paper, the automorphism group of a generalized extraspecial p-group G is determined, where p is a prime number. Assume that |G| = p 2n+m and |ζG| = p m , where n 1 and m 2. (1) When p is odd, let Aut G G = {α∈ AutG | α acts trivially on G }. Then Aut G G⊿AutG and AutG/Aut G G≌Z p-1 . Furthermore, (i) If G is of exponent p m , then Aut G G/InnG≌Sp(2n, p) × Z p m-1 . (ii) If G is of exponent p m+1 , then Aut G G/InnG≌ (K Sp(2n-2, p))×Z p m-1 , where K is an extraspecial p-group of order p 2n-1 . In particular, Aut G G/InnG≌ Z p × Z p m-1 when n = 1. (2) When p = 2, then, (i) If G is of exponent 2 m , then AutG≌ Sp(2n, 2) × Z 2 × Z 2 m-2 . In particular, when n = 1, |AutG| = 3 · 2 m+2 . None of the Sylow subgroups of AutG is normal, and each of the Sylow 2-subgroups of AutG is isomorphic to H K, where H = Z 2 × Z 2 × Z 2 × Z 2 m-2 , K = Z 2 . (ii) If G is of exponent 2 m+1 , then AutG≌ (I Sp(2n-2, 2)) × Z 2 × Z 2 m-2 , where I is an elementary abelian 2-group of order 2 2n-1 . In particular, when n = 1, |AutG| = 2 m+2 and AutG≌ H K, where H = Z 2 × Z 2 × Z 2 m-1 , K = Z 2 .
基金supported by National Natural Science Foundation of China(Grant Nos.10990011,11271004 and 61071221)the Doctoral Program of Higher Education of China(Grant No.20100001110007)the Natural Science Foundation of Hebei Province(Grant No.A2009000253)
文摘Let Fq be a finite field of odd characteristic, m, v the integers with 1 ≤ m ≤ v and K a 2v × 2v nonsingular alternate matrix over Fq. In this paper, the generalized symplectic graph GSp2v(q, m) relative to K over Fq is introduced. It is the graph with m-dimensional totally isotropic subspaces of the 2v-dimensional symplectic space Fq(2v) as its vertices and two vertices P and Q are adjacent if and only if the rank of PKQw is 1 and the dimension of P ∩ Q is m - 1. It is proved that the full automorphism group of the graph GSp2v(q, m) is the projective semilinear symplectic group P∑p(2v, q).
基金This work was supported in part by the National Natural Science Foundation of China (Grant Nos. 10825101, 10861004, 11101266), SMSTC grant no. 12XD1405000, Fundamental Research Funds for the Central Universities, and Science & Technology Program of Shanghai Maritime University.
文摘We determine the derivation algebra and the automorphism group of the generalized topological N = 2 superconformal algebra.
基金supported by National Natural Science Foundation of China(Grant Nos.11371335 and 11301227)Wu Wen-Tsun Key Laboratory of Mathematics,USTC,Chinese Academy of Sciences,and Chinese Academy of Sciences Visiting Professorship for Senior International Scientists(Grant No.2010T2J12)
文摘Let A be a subgroup of a finite group G. We say that A is a generalized CAP-subgroup of G if for each chief factor H/K of G either A avoids H/K or the following holds:(1) If H/K is non-abelian, then|H :(A ∩H)K | is a p′-number for every p ∈π((A ∩H)K/K);(2) If H/K is a p-group, then |G : NG(K(A ∩H))| is a p-number. In this paper, we use the generalized CAP-subgroup to characterize the structure of finite groups.Some new characterizations of the hypercyclically embedded subgroups of a finite group are obtained and a series of known results are generalized.
基金Supported by the 2011 Yeungnam University Research Grantsupported by the Fundamental Research Funds for the Central Universities(Grant No.XDJK2009C189)National Natural Science Foundation of China(Grant No.11271301)
文摘In this paper, we show that certain generalized free products of nilpotent-by-finite groups are subgroup separable when the amalgamated subgroup is × D where D is in the center of both factors.
基金Supported by a Discovery Grant from the Natural Science and Engineering Research Council of Canadathe National Natural Science Foundation of China(Grant Nos.71171120,71571108,11401329)+5 种基金the Project of International(Regional) Cooperation and Exchanges of NSFC(Grant No.71411130215)the Specialized Research Fund for the Doctoral Program of Higher Education of China(Grant No.20133706110002)the Natural Science Foundation of Shandong Province(Grant No.ZR2015GZ007)the Doctoral Fund of Shandong Province(Grant No.BS2012SF003)the Project of Shandong Province Higher Educational Science and Technology Program(Grant No.J14LI10)the Project of Shandong Province Higher Educational Excellent Backbone Teachers for International Cooperation and Training
文摘Let D be a generalized dihedral group and Autcol(D) its Coleman automorphism group. Denote by Outcol(D) the quotient group of Autcol(D) by Inn(D), where Inn(D) is the inner automorphism group of D. It is proved that either Outcol(D) = i or Outcol(D) is an elementary abelian 2-group whose order is completely determined by the cardinality of π(D). Furthermore, a necessary and sufficient condition for Outcol(D) = 1 is obtained. In addition, whenever Outcol(D) ≠ 1, it is proved that Autcol(D) is a split extension of Inn(D) by an elementary abelian 2-group for which an explicit description is given.
基金Project supported by NSFC (11371124, 11301150) and the Natural Science Foundation of Henan Province of China (142300410134, 162300410066).
文摘The automorphism group of G is determined, where G is a nonabelian p-group given by a central extension as 1→Zpm→G→Zp×…×Zp→1 such that its derived subgroup has order p.
基金Supported by NSFC(Grant Nos.11771129 and 11601121)Henan Provincial Natural Science Foundation of China(Grant No.162300410066)Program for Innovation Talents of Science and Technology of Henan University of Technology(Grant No.11CXRC19)
文摘The automorphism group of a class of nilpotent groups with infinite cyclic derived subgroups is determined. Let G be the direct product of a generalized extraspecial E-group E and a free abelian group A with rank m, where E={{1 kα1 kα2…kαn aα+1 0 1 0 … 0 αn+2 0 0 0 … 1 α2n+1 0 0 0 …0 1}}αi∈Z,i=1,2,…,2n+1},where k is a positive integer. Let AutG'G be the normal subgroup of AutG consisting of all elements of AutG which act trivially on the derived subgroup G' of G, and Autc G/ζG,ζGG be the normal subgroup of AutG consisting of all central automorphisms of G which also act trivially on the center ζG of G. Then (i) The extension →AutG'G→AutG→AutG'→1 is split.(ii)AutG'G/AutG/ζG,ζGG≈Sp(2n,Z)×(GL(m,Z)×(Z)m),(iii)Aut GζG,ζGG/InnG≈(Zk)2n+(Z)2nm.
基金supported by National Natural Science Foundation of China (Grant Nos.10771172,11001226)Postgraduate Innovation Foundation of Southwest University (Grant Nos. ky2009013,ky2010007)
文摘Let H be a subgroup of a group G. Then H is said to be S-quasinormal in G if HP = PH for every Sylow subgroup P of G; H is said to be S-quasinormally embedded in G if a Sylow p-subgroup of H is also a Sylow p-subgroup of some S-quasinormal subgroup of G for each prime p dividing the order of H. In this paper, we say that H is weakly S-embedded in G if G has a normal subgroup T such that HT is an S-quasinormal subgroup of G and H VIT ≤ HSE, where HSE denotes the subgroup of H generated by all those subgroups of H which are S-quasinormally embedded in G. Some results about the influence of weakly S-embedded subgroups on the structure of finite groups are given.
文摘In this paper we give a characterization for certain HNN extensions oi suogroup separable groups with normal associated subgroups to be weakly potent. We then apply our result to show that certain HNN extensions of finitely generated nilpotent groups with central associated subgroups are weakly potent.
基金supported by the Korean Research Foundation from the Korean Government (Grant No.KRF-2008-313-C00017)the partial support by the Natural Science and Engineering Research Council of Canada (Grant No.A-4064)
文摘Grossman first showed that outer automorphism groups of 1-relator groups given by orientable surface groups are residually finite,whence mapping class groups of orientable surfaces are residually finite.Allenby,Kim and Tang showed that outer automorphism groups of cyclically pinched 1-relator groups are residually finite,whence mapping class groups of orientable and non-orientable surfaces are residually finite.In this paper we show that outer automorphism groups of certain conjugacy separable 1-relator groups are residually finite.