Quantitative description of vapor-liquid equilibrium is very useful for designing separation processes. In this study, we combined the Peng-Robinson equation and the Huron-Vidal-Orbey-Sandler mixing rule into a modifi...Quantitative description of vapor-liquid equilibrium is very useful for designing separation processes. In this study, we combined the Peng-Robinson equation and the Huron-Vidal-Orbey-Sandler mixing rule into a modified UNIFAC model for the improvement of predicting vapor-liquid equilibria. The predictions of vapor-liquid equilibria for 62 systems including alcohol- alkane, alcohol-benzene, and amine-water systems demonstrate that the revised parameters remarkably improve the prediction accuracy for many systems. Especially for amine-water system, the mean deviation of components decreases from 0.094 to 0.021, and the mean deviation of pressure from 22.45% to 4.41%.展开更多
文摘Quantitative description of vapor-liquid equilibrium is very useful for designing separation processes. In this study, we combined the Peng-Robinson equation and the Huron-Vidal-Orbey-Sandler mixing rule into a modified UNIFAC model for the improvement of predicting vapor-liquid equilibria. The predictions of vapor-liquid equilibria for 62 systems including alcohol- alkane, alcohol-benzene, and amine-water systems demonstrate that the revised parameters remarkably improve the prediction accuracy for many systems. Especially for amine-water system, the mean deviation of components decreases from 0.094 to 0.021, and the mean deviation of pressure from 22.45% to 4.41%.