期刊文献+
共找到73篇文章
< 1 2 4 >
每页显示 20 50 100
The Group Method of Data Handling (GMDH) and Artificial Neural Networks (ANN)in Time-Series Forecasting of Rice Yield
1
作者 Nadira Mohamed Isa Shabri Ani Samsudin Ruhaidah 《材料科学与工程(中英文B版)》 2011年第3期378-387,共10页
关键词 时间序列预测模型 人工神经网络 gmdh 水稻产量 数据处理 ANN 多项式函数 双曲线
下载PDF
Modeling viscosity of methane,nitrogen,and hydrocarbon gas mixtures at ultra-high pressures and temperatures using group method of data handling and gene expression programming techniques
2
作者 Farzaneh Rezaei Saeed Jafari +1 位作者 Abdolhossein Hemmati-Sarapardeh Amir H.Mohammadi 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2021年第4期431-445,共15页
Accurate gas viscosity determination is an important issue in the oil and gas industries.Experimental approaches for gas viscosity measurement are timeconsuming,expensive and hardly possible at high pressures and high... Accurate gas viscosity determination is an important issue in the oil and gas industries.Experimental approaches for gas viscosity measurement are timeconsuming,expensive and hardly possible at high pressures and high temperatures(HPHT).In this study,a number of correlations were developed to estimate gas viscosity by the use of group method of data handling(GMDH)type neural network and gene expression programming(GEP)techniques using a large data set containing more than 3000 experimental data points for methane,nitrogen,and hydrocarbon gas mixtures.It is worth mentioning that unlike many of viscosity correlations,the proposed ones in this study could compute gas viscosity at pressures ranging between 34 and 172 MPa and temperatures between 310 and 1300 K.Also,a comparison was performed between the results of these established models and the results of ten wellknown models reported in the literature.Average absolute relative errors of GMDH models were obtained 4.23%,0.64%,and 0.61%for hydrocarbon gas mixtures,methane,and nitrogen,respectively.In addition,graphical analyses indicate that the GMDH can predict gas viscosity with higher accuracy than GEP at HPHT conditions.Also,using leverage technique,valid,suspected and outlier data points were determined.Finally,trends of gas viscosity models at different conditions were evaluated. 展开更多
关键词 Gas Viscosity High pressure high temperature group method of data handling Gene expression programming
下载PDF
Group Method of Data Handling for Modeling Magnetorheological Dampers
3
作者 Khaled Assaleh Tamer Shanableh Yasmin Abu Kheil 《Intelligent Control and Automation》 2013年第1期70-79,共10页
This paper proposes the use of Group Method of Data Handling (GMDH) technique for modeling Magneto-Rheological (MR) dampers in the context of system identification. GMDH is a multilayer network of quadratic neurons th... This paper proposes the use of Group Method of Data Handling (GMDH) technique for modeling Magneto-Rheological (MR) dampers in the context of system identification. GMDH is a multilayer network of quadratic neurons that offers an effective solution to modeling non-linear systems. As such, we propose the use of GMDH to approximate the forward and inverse dynamic behaviors of MR dampers. We also introduce two enhanced GMDH-based solutions. Firstly, a two-tier architecture is proposed whereby an enhanced GMD model is generated by the aid of a feedback scheme. Secondly, stepwise regression is used as a feature selection method prior to GMDH modeling. The proposed enhancements to GMDH are found to offer improved prediction results in terms of reducing the root-mean-squared error by around 40%. 展开更多
关键词 System IDENTIFICATION Magneto-Rheological DAMPERS group method of data handling POLYNOMIAL CLASSIFIER
下载PDF
基于CEEMDAN-GMDH-ARIMA的大坝变形预测模型研究
4
作者 程小龙 张斌 +1 位作者 刘相杰 刘陶胜 《人民黄河》 CAS 北大核心 2024年第1期146-150,共5页
为提高大坝变形预测精度,针对大坝变形数据的复杂性和非线性等特征,基于自适应噪声完备集成经验模态分解(CEEMDAN)、数据处理群集法(GMDH)和差分自回归移动平均模型算法(ARIMA)进行大坝变形预测研究。采用CEEMDAN将大坝变形原始数据分... 为提高大坝变形预测精度,针对大坝变形数据的复杂性和非线性等特征,基于自适应噪声完备集成经验模态分解(CEEMDAN)、数据处理群集法(GMDH)和差分自回归移动平均模型算法(ARIMA)进行大坝变形预测研究。采用CEEMDAN将大坝变形原始数据分解为高频随机分量、中频周期分量和低频趋势分量,再分别采用GMDH模型、ARIMA模型对高中频分量、低频分量进行预测,建立基于CEEMDAN-GMDH-ARIMA的大坝变形预测模型。以江西上犹江水电站为例,将该模型预测结果与反向传播(BP)、径向基函数(RBF)、GMDH和CEEMDAN-GMDH模型的预测结果进行对比分析。结果表明:CEEMDAN-GMDH-ARIMA模型的均方根误差(E_(RMS))、平均绝对误差(E_(MA))、相关系数(r)分别为0.048 mm、0.035 mm、0.994,均优于BP、RBF、GMDH、CEEMDAN-GMDH模型,模型预测效果最好,能够很好地体现监测点水平位移变化趋势。 展开更多
关键词 自适应噪声完备集成经验模态分解 数据处理群集法 差分自回归移动平均模型算法 大坝 变形预测 江西上犹江水电站
下载PDF
Predicting beach profile evolution with group method data handling-type neural networks on beaches with seawalls 被引量:1
5
作者 M.A.LASHTEH NESHAEI M.A.MEHRDAD +1 位作者 N.ABEDIMAHZOON N.ASADOLLAHI 《Frontiers of Structural and Civil Engineering》 SCIE EI CSCD 2013年第2期117-126,共10页
A major goal of coastal engineering is to develop models for the reliable prediction of short-and longterm near shore evolution.The most successful coastal models are numerical models,which allow flexibility in the ch... A major goal of coastal engineering is to develop models for the reliable prediction of short-and longterm near shore evolution.The most successful coastal models are numerical models,which allow flexibility in the choice of initial and boundary conditions.In the present study,evolutionary algorithms(EAs)are employed for multi-objective Pareto optimum design of group method data handling(GMDH)-type neural networks that have been used for bed evolution modeling in the surf zone for reflective beaches,based on the irregular wave experiments performed at the Hydraulic Laboratory of Imperial College(London,UK).The input parameters used for such modeling are significant wave height,wave period,wave action duration,reflection coefficient,distance from shoreline and sand size.In this way,EAs with an encoding scheme are presented for evolutionary design of the generalized GMDH-type neural networks,in which the connectivity configurations in such networks are not limited to adjacent layers.Also,multi-objective EAs with a diversity preserving mechanism are used for Pareto optimization of such GMDH-type neural networks.The most important objectives of GMDH-type neural networks that are considered in this study are training error(TE),prediction error(PE),and number of neurons(N).Different pairs of these objective functions are selected for two-objective optimization processes.Therefore,optimal Pareto fronts of such models are obtained in each case,which exhibit the trade-offs between the corresponding pair of the objectives and,thus,provide different non-dominated optimal choices of GMDH-type neural network model for beach profile evolution.The results showed that the present model has been successfully used to optimally prediction of beach profile evolution on beaches with seawalls. 展开更多
关键词 beach profile evolution genetic algorithms group method of data handling PARETO reflective beaches
原文传递
基于Log-GMDH模型的我国能源消费中长期预测 被引量:7
6
作者 李红梅 贺昌政 肖进 《软科学》 CSSCI 北大核心 2012年第5期51-54,66,共5页
利用Logistic函数作为GMDH两水平自回归算法的传递函数构建了新模型:Log-GMDH模型。运用我国1979~1999年的历史能源消费总量数据,将Log-GMDH模型在检测集(2000~2010年)上的预测结果与自回归移动平均(ARMA)模型和BP神经网络模型进行了... 利用Logistic函数作为GMDH两水平自回归算法的传递函数构建了新模型:Log-GMDH模型。运用我国1979~1999年的历史能源消费总量数据,将Log-GMDH模型在检测集(2000~2010年)上的预测结果与自回归移动平均(ARMA)模型和BP神经网络模型进行了比较,表明Log-GMDH模型有更准确和更稳定的预测效果。对我国未来30年(2011~2040年)的能源消费总量进行预测时,发现Log-GMDH模型更适合于反映我国新形势下可持续发展的能源战略。运用Log-GMDH模型的预测结果得到:我国未来能源消费先将有较大幅度的增长,到2030年总量将达62.55亿吨标准煤,之后能源消费将逐步得到较好的控制,预计将于2040年实现"零增长",届时全国能源消费总量约为65.70亿吨标准煤。 展开更多
关键词 能源消费 预测 gmdh Logistic函数
下载PDF
基于GMDH的组合预测模型应用研究 被引量:5
7
作者 何跃 杨剑 徐玖平 《计算机应用》 CSCD 北大核心 2007年第2期456-458,共3页
应用数据处理的分组方法(GMDH)多层算法、GMDH自回归算法、多维AC算法、单维AC算法,建立了基于GMDH的工业增加值预测模型,在此基础上建立了最优线性组合预测模型。实验证明本文方法不仅改善了模型对数据样本的拟合精度,而且提高了模型... 应用数据处理的分组方法(GMDH)多层算法、GMDH自回归算法、多维AC算法、单维AC算法,建立了基于GMDH的工业增加值预测模型,在此基础上建立了最优线性组合预测模型。实验证明本文方法不仅改善了模型对数据样本的拟合精度,而且提高了模型的预测能力。 展开更多
关键词 数据处理的分组方法模型 相似体合成算法模型 组合预测 工业增加值
下载PDF
基于GMDH的卷烟工艺参数-指标关系模型研究 被引量:3
8
作者 唐云岚 高妍方 陈英武 《计算机工程与应用》 CSCD 北大核心 2008年第28期13-14,36,共3页
通过对烟草加工中工艺参数与质量指标之间的关系研究,提出采用自组织数据挖掘方法建立相应的关系模型,并利用该模型预测质量指标取值。通过与多元线性回归模型的预测值对比,证明了该方法的有效性。
关键词 自组织数据挖掘 卷烟 制丝工艺 工艺参数 数据分组处理方法
下载PDF
中长期负荷预测的GMDH多结构自动搜索模型 被引量:3
9
作者 林佳 程浩忠 +2 位作者 顾洁 杨宗麟 王峥 《电力系统及其自动化学报》 CSCD 北大核心 2010年第5期41-45,共5页
针对我国当前经济、政策变动的大背景,提出了采用数据分组处理方法GMDH(group method of data handling)结合多结构突变理论,实现时序突变点自动搜索建模,建立了中长期负荷预测的GMDH多结构自动搜索模型。该模型能够客观准确地搜索时间... 针对我国当前经济、政策变动的大背景,提出了采用数据分组处理方法GMDH(group method of data handling)结合多结构突变理论,实现时序突变点自动搜索建模,建立了中长期负荷预测的GMDH多结构自动搜索模型。该模型能够客观准确地搜索时间序列中的所有突变点,并充分利用突变点信息修正由于经济环境和突发事件引起的预测偏差,大大提高了传统时序外推预测模型的精度。华东地区的实际算例结果表明了该模型的有效性。 展开更多
关键词 中长期电力负荷预测 数据分组处理 多结构突变 自动搜索算法 华东地区
下载PDF
AC算法的EMD分解GMDH组合的预测模型及应用 被引量:5
10
作者 李成刚 田益祥 何继锐 《系统管理学报》 CSSCI 2012年第1期105-110,共6页
引入EMD把含有多个震荡模式的数据分解为满足一定条件的多个单一震荡模式分量的线性叠加,对震荡模式分量应用非参数的AC算法,通过历史上相似时期的已知延拓进行预测,利用GMDH客观确定权重构建组合预测模型,并运用该模型结合原油期货数... 引入EMD把含有多个震荡模式的数据分解为满足一定条件的多个单一震荡模式分量的线性叠加,对震荡模式分量应用非参数的AC算法,通过历史上相似时期的已知延拓进行预测,利用GMDH客观确定权重构建组合预测模型,并运用该模型结合原油期货数据进行实证。结果表明:用EMD方法改进AC预测模型提高了预测的准确性,在此基础上,GMDH的智能化权重的组合预测模型进行预测,结果显示,AC算法的EMD分解GMDH智能化权重组合预测精度更高。 展开更多
关键词 自组织相似体合成 数据分组处理方法 经验模式分解
下载PDF
基于Grey-GMDH的模块化实时潮汐预报 被引量:4
11
作者 张泽国 尹建川 柳成 《中国海洋大学学报(自然科学版)》 CAS CSCD 北大核心 2018年第11期140-146,共7页
为了提高潮汐水位的实时预测精度,本文提出了一种基于灰色的数据处理群模块化(Grey-GMDH)潮汐水位实时预测模型。模块化将潮汐分解为两部分:由天体引潮力形成的天文潮部分和由各种天气以及环境因素引起非天文潮部分。使用Grey-GMDH模型... 为了提高潮汐水位的实时预测精度,本文提出了一种基于灰色的数据处理群模块化(Grey-GMDH)潮汐水位实时预测模型。模块化将潮汐分解为两部分:由天体引潮力形成的天文潮部分和由各种天气以及环境因素引起非天文潮部分。使用Grey-GMDH模型和调和分析模型分别对潮汐的非天文潮和天文潮部分进行仿真预测,然后将两部分的预测结果综合形成最终的潮汐预测值。并选用San Diego港口的实测潮汐值数据进行实时预报的仿真实验,实验结果验证了该方法的可行性与有效性并取得了良好的仿真结果,验证了模型有着较高的预报精度。 展开更多
关键词 潮汐水位实时预报 调和分析法 模块化 数据处理群网络 灰色模型
下载PDF
GMDH算法的终止法则研究 被引量:5
12
作者 张宾 贺昌政 《吉林大学学报(信息科学版)》 CAS 2005年第3期257-262,共6页
为了从理论上说明GMDH(GroupMethodofDataHanding)最优复杂度模型如何在推广能力与拟合精度之间达到平衡,用插值方法讨论了GMDH外准则值取得全局最小值时,对应的模型复杂度的位置。分析了模型在一定噪声水平下,已知训练集上的拟合能力... 为了从理论上说明GMDH(GroupMethodofDataHanding)最优复杂度模型如何在推广能力与拟合精度之间达到平衡,用插值方法讨论了GMDH外准则值取得全局最小值时,对应的模型复杂度的位置。分析了模型在一定噪声水平下,已知训练集上的拟合能力与具有同一规律性的新数据上的推广能力关系,结果显示,GMDH最优模型的结构偏差与噪声影响的比值落在1的一个小领域内,其大小随噪声方差和外准则的变化而变化。说明,GMDH最优模型如何在拟合精度与推广能力之间达到平衡。 展开更多
关键词 gmdh算法 终止法则 最优模型复杂度
下载PDF
基于模糊GMDH网络的交通流量预测模型 被引量:3
13
作者 陈洪 陈森发 《南京理工大学学报》 EI CAS CSCD 北大核心 2010年第1期46-50,共5页
针对传统数据处理组合方法(Group method of data handling,GMDH)网络建模用最小二乘法辨识参数会导致模型预测效果不理想的问题,将模糊推理模型引入GMDH网络,以取代传统GMDH网络的部分描述(即完全二元二次多项式),提出了一种基于模糊G... 针对传统数据处理组合方法(Group method of data handling,GMDH)网络建模用最小二乘法辨识参数会导致模型预测效果不理想的问题,将模糊推理模型引入GMDH网络,以取代传统GMDH网络的部分描述(即完全二元二次多项式),提出了一种基于模糊GMDH网络的交通流量预测模型。计算机仿真结果表明,该模型预测平均相对误差仅为2.31%,小于传统GMDH网络模型预测平均相对误差3.35%,说明了该模型是有效的。 展开更多
关键词 数据处理组合方法 网络 模糊 交通流量 预测
下载PDF
基于相空间重构的GMDH方法在复杂机械系统状态预测中的应用 被引量:3
14
作者 石博强 薛辉 《北京科技大学学报》 EI CAS CSCD 北大核心 1999年第6期577-579,共3页
把数据处理的组合法(GMDH)与相空间理论相结合,提出了基于相空间重构的GMDH方法,并且把它应用于复杂机械系统的状态预测.预测和测试矿用汽车发动机曲轴箱窜气压力值证明。
关键词 相空间 机械系统 状态预测 故障诊断 gmdh
下载PDF
GMDH神经网络在空袭目标识别中的应用 被引量:5
15
作者 马飞 华继学 白冬婴 《微计算机信息》 北大核心 2008年第19期258-260,共3页
在现代防空作战中,如何快速准确的对敌我(友)目标进行识别,至关重要。本文提出利用GMDH神经网络对空袭目标的分类识别,GMDH称为数据处理的群集方法,适合于有较多网络输入的预测与分类。试验结果表明,该方法符合现代防空作战中目标识别... 在现代防空作战中,如何快速准确的对敌我(友)目标进行识别,至关重要。本文提出利用GMDH神经网络对空袭目标的分类识别,GMDH称为数据处理的群集方法,适合于有较多网络输入的预测与分类。试验结果表明,该方法符合现代防空作战中目标识别的要求,具有一定的实用价值。 展开更多
关键词 gmdh 神经网络 目标识别
下载PDF
基于模拟退火遗传算法的GMDH网络模型 被引量:4
16
作者 张慧 刘湘南 黄刚 《华中师范大学学报(自然科学版)》 CAS 北大核心 2013年第2期162-166,共5页
针对传统GMDH网络建模用最小二乘法辨识参数时容易陷入局部极小导致模型预测效果不理想的问题,提出将模拟退火算法与遗传算法结合起来,并引入到GMDH网络,用模拟退火遗传算法来辨识其部分描述式系数.描述了模拟退火遗传算法,构建了基于... 针对传统GMDH网络建模用最小二乘法辨识参数时容易陷入局部极小导致模型预测效果不理想的问题,提出将模拟退火算法与遗传算法结合起来,并引入到GMDH网络,用模拟退火遗传算法来辨识其部分描述式系数.描述了模拟退火遗传算法,构建了基于该算法的GMDH网络模型,并将该模型应用于泥石流预测的仿真研究,预测平均相对误差达到3.54%.结果表明,该算法既保证了全局寻优又防止了过早收敛,进一步提高了GMDH网络模型的全局与局部寻优能力. 展开更多
关键词 模拟退火算法 遗传算法 自组织 gmdh 预测
下载PDF
GMDH物价指数预测模型研究及实证 被引量:1
17
作者 田益祥 《电子科技大学学报》 EI CAS CSCD 北大核心 2005年第4期569-572,共4页
利用物价指数的月均值与年均值数据同时建模的数据处理群组方法的两水平算法,扩大了月均值数据的可预测范围,引入以三角函数求和形式的调和自组织的数据处理群组方法解决月均值物价指数的波动影响,提高了月均值数据预测的准确性。实证... 利用物价指数的月均值与年均值数据同时建模的数据处理群组方法的两水平算法,扩大了月均值数据的可预测范围,引入以三角函数求和形式的调和自组织的数据处理群组方法解决月均值物价指数的波动影响,提高了月均值数据预测的准确性。实证分析表明,数据处理群组方法的调和两水平方法预测月均值物价指数是有效的。 展开更多
关键词 数据处理群组方法 多层迭代 调和算法 物价指数
下载PDF
基于KPCA和数据处理组合方法神经网络的半球谐振陀螺温度建模补偿方法
18
作者 张晨 汪立新 孔祥玉 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2024年第7期1336-1345,共10页
针对半球谐振陀螺(HRG)的温度建模与补偿问题,提出基于核主成分分析(KPCA)和数据处理组合方法(GMDH)神经网络的建模补偿方法.通过分析HRG的温度特性和大数据特征,初步确定网络模型的特征向量.为了去除HRG输出数据的相关性和冗余性,引入K... 针对半球谐振陀螺(HRG)的温度建模与补偿问题,提出基于核主成分分析(KPCA)和数据处理组合方法(GMDH)神经网络的建模补偿方法.通过分析HRG的温度特性和大数据特征,初步确定网络模型的特征向量.为了去除HRG输出数据的相关性和冗余性,引入KPCA并降低特征向量维度.将特征向量代入GMDH神经网络训练,区分训练集和验证集以确定网络权值和网络结构,实现HRG温度漂移的建模与补偿.实验结果表明,单一样本预测时,所提方法预测效果明显好于传统多项式模型;多样本预测时,在4种不同训练样本下,所提方法相比传统多项式模型精度分别提升了48.5%、54.0%、56.3%、68.4%,相比GMDH模型分别提升了3.6%、5.1%、3.8%、8.8%.所提方法能够有效提高HRG在变温工况下的测量精度. 展开更多
关键词 半球谐振陀螺(HRG) 核主成分分析(KPCA) 数据处理组合方法(gmdh) 温度建模与补偿 测量精度
下载PDF
基于GMDH的迁移特征选择模型研究
19
作者 李红梅 贺昌政 肖进 《计算机应用研究》 CSCD 北大核心 2012年第3期829-832,共4页
将迁移学习和数据分组处理算法集成起来,提出了一种基于数据分组处理算法的迁移特征选择(GM-DH-TFS)模型。在UCI的四个数据集上,将GMDH-TFS模型与以全部特征作分类(FULL)的结果以及常用的特征选择模型(前向监督特征选择模型(SFFS)、前... 将迁移学习和数据分组处理算法集成起来,提出了一种基于数据分组处理算法的迁移特征选择(GM-DH-TFS)模型。在UCI的四个数据集上,将GMDH-TFS模型与以全部特征作分类(FULL)的结果以及常用的特征选择模型(前向监督特征选择模型(SFFS)、前向半监督特征选择模型(FW-SemiFS)和迁移特征选择模型(TFS))作比较实验,结果表明,GMDH-TFS在特征选择方面比其他四种方法有更好的效果,在小样本情况下也得到了同样的结果。GMDH-TFS模型可以在数据分布不一致的情况下进行特征选择,同时面对数据匮乏也能取得理想的效果。 展开更多
关键词 特征选择 迁移学习 数据分组处理
下载PDF
基于RS的GMDH神经网络在空袭目标识别中的应用
20
作者 马飞 曹泽阳 任晓东 《空军工程大学学报(自然科学版)》 CSCD 北大核心 2010年第1期31-35,共5页
针对目标属性识别的特点,建立了基于粗糙集(Rough Sets,RS)的数据分组处理(GroupMethod of Data Handling,GMDH)神经网络分类模型。该模型较好地解决了采用高维数据集训练神经网络效率低,神经网络结构规模较大的问题。同时为了提高高维... 针对目标属性识别的特点,建立了基于粗糙集(Rough Sets,RS)的数据分组处理(GroupMethod of Data Handling,GMDH)神经网络分类模型。该模型较好地解决了采用高维数据集训练神经网络效率低,神经网络结构规模较大的问题。同时为了提高高维数据集合的属性约简效率,改进了集合近似质量属性约简算法。最后,通过与BP(Back-Propagation,BP)神经网络分类能力的仿真对比,结果表明,基于粗糙集的数据分组处理神经网络分类模型分类能力优于BP神经网络模型,满足现代防空作战对目标属性识别的需求,基于快速求核和集合近似质量的属性约简算法快速有效。 展开更多
关键词 粗糙集 神经网络 成组数据处理 约简
下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部