The large-scale multi-objective optimization algorithm(LSMOA),based on the grouping of decision variables,is an advanced method for handling high-dimensional decision variables.However,in practical problems,the intera...The large-scale multi-objective optimization algorithm(LSMOA),based on the grouping of decision variables,is an advanced method for handling high-dimensional decision variables.However,in practical problems,the interaction among decision variables is intricate,leading to large group sizes and suboptimal optimization effects;hence a large-scale multi-objective optimization algorithm based on weighted overlapping grouping of decision variables(MOEAWOD)is proposed in this paper.Initially,the decision variables are perturbed and categorized into convergence and diversity variables;subsequently,the convergence variables are subdivided into groups based on the interactions among different decision variables.If the size of a group surpasses the set threshold,that group undergoes a process of weighting and overlapping grouping.Specifically,the interaction strength is evaluated based on the interaction frequency and number of objectives among various decision variables.The decision variable with the highest interaction in the group is identified and disregarded,and the remaining variables are then reclassified into subgroups.Finally,the decision variable with the strongest interaction is added to each subgroup.MOEAWOD minimizes the interactivity between different groups and maximizes the interactivity of decision variables within groups,which contributed to the optimized direction of convergence and diversity exploration with different groups.MOEAWOD was subjected to testing on 18 benchmark large-scale optimization problems,and the experimental results demonstrate the effectiveness of our methods.Compared with the other algorithms,our method is still at an advantage.展开更多
In this note, we consider the multipliers on weighted function spaces over totally disconnected locally compact abelian groups (Vilenkin groups). Firstly we show an (H1 ,L ) multiplier result. We also give an (Hap ,Ha...In this note, we consider the multipliers on weighted function spaces over totally disconnected locally compact abelian groups (Vilenkin groups). Firstly we show an (H1 ,L ) multiplier result. We also give an (Hap ,Hap) multiplier result under a similiar condition of Lu Yang type. In section 2, we obtain a result about the boundedness of multipliers on weighted Besov spaces.展开更多
Let(W,S) be a Coxeter group with S = I■J such that J consists of all universal elements of S and that I generates a finite parabolic subgroup W_I of W with w_0 the longest element of W_I. We describe all the left cel...Let(W,S) be a Coxeter group with S = I■J such that J consists of all universal elements of S and that I generates a finite parabolic subgroup W_I of W with w_0 the longest element of W_I. We describe all the left cells and two-sided cells of the weighted Coxeter group(W,S,L) that have non-empty intersection with W_J,where the weight function L of(W, S) is in one of the following cases:(i) max{L(s) | s ∈J} < min{L(t)|t∈I};(ii) min{L(s)|s ∈J} ≥L(w_0);(iii) there exists some t ∈ I satisfying L(t) < L(s) for any s ∈I-{t} and L takes a constant value L_J on J with L_J in some subintervals of [1, L(w_0)-1]. The results in the case(iii) are obtained under a certain assumption on(W, W_I).展开更多
Salient object detection is used as a preprocess in many computer vision tasks(such as salient object segmentation,video salient object detection,etc.).When performing salient object detection,depth information can pr...Salient object detection is used as a preprocess in many computer vision tasks(such as salient object segmentation,video salient object detection,etc.).When performing salient object detection,depth information can provide clues to the location of target objects,so effective fusion of RGB and depth feature information is important.In this paper,we propose a new feature information aggregation approach,weighted group integration(WGI),to effectively integrate RGB and depth feature information.We use a dual-branch structure to slice the input RGB image and depth map separately and then merge the results separately by concatenation.As grouped features may lose global information about the target object,we also make use of the idea of residual learning,taking the features captured by the original fusion method as supplementary information to ensure both accuracy and completeness of the fused information.Experiments on five datasets show that our model performs better than typical existing approaches for four evaluation metrics.展开更多
The blockwise Alperin weight conjecture assets that for any finite group G and any prime l, the number of the Brauer characters in an l-block B equals the number of the G-conjugacy classes of l-weights belonging to B....The blockwise Alperin weight conjecture assets that for any finite group G and any prime l, the number of the Brauer characters in an l-block B equals the number of the G-conjugacy classes of l-weights belonging to B. Recently, the inductive blockwise Alperin weight condition has been introduced such that the blockwise Alperin weight conjecture holds if all non-abelian simple groups satisfy these conditions. We will verify the inductive blockwise Alperin weight condition for the finite simple groups PSL(3, q) in this paper.展开更多
基金supported in part by the Central Government Guides Local Science and TechnologyDevelopment Funds(Grant No.YDZJSX2021A038)in part by theNational Natural Science Foundation of China under(Grant No.61806138)in part by the China University Industry-University-Research Collaborative Innovation Fund(Future Network Innovation Research and Application Project)(Grant 2021FNA04014).
文摘The large-scale multi-objective optimization algorithm(LSMOA),based on the grouping of decision variables,is an advanced method for handling high-dimensional decision variables.However,in practical problems,the interaction among decision variables is intricate,leading to large group sizes and suboptimal optimization effects;hence a large-scale multi-objective optimization algorithm based on weighted overlapping grouping of decision variables(MOEAWOD)is proposed in this paper.Initially,the decision variables are perturbed and categorized into convergence and diversity variables;subsequently,the convergence variables are subdivided into groups based on the interactions among different decision variables.If the size of a group surpasses the set threshold,that group undergoes a process of weighting and overlapping grouping.Specifically,the interaction strength is evaluated based on the interaction frequency and number of objectives among various decision variables.The decision variable with the highest interaction in the group is identified and disregarded,and the remaining variables are then reclassified into subgroups.Finally,the decision variable with the strongest interaction is added to each subgroup.MOEAWOD minimizes the interactivity between different groups and maximizes the interactivity of decision variables within groups,which contributed to the optimized direction of convergence and diversity exploration with different groups.MOEAWOD was subjected to testing on 18 benchmark large-scale optimization problems,and the experimental results demonstrate the effectiveness of our methods.Compared with the other algorithms,our method is still at an advantage.
文摘In this note, we consider the multipliers on weighted function spaces over totally disconnected locally compact abelian groups (Vilenkin groups). Firstly we show an (H1 ,L ) multiplier result. We also give an (Hap ,Hap) multiplier result under a similiar condition of Lu Yang type. In section 2, we obtain a result about the boundedness of multipliers on weighted Besov spaces.
基金supported by National Natural Science Foundation of China (Grant Nos. 11131001 and 11471115)Shanghai Key Laboratory of Pure Mathematics and Mathematical PracticeScience and Technology Commission of Shanghai Municipality (Grant No.13dz2260400)
文摘Let(W,S) be a Coxeter group with S = I■J such that J consists of all universal elements of S and that I generates a finite parabolic subgroup W_I of W with w_0 the longest element of W_I. We describe all the left cells and two-sided cells of the weighted Coxeter group(W,S,L) that have non-empty intersection with W_J,where the weight function L of(W, S) is in one of the following cases:(i) max{L(s) | s ∈J} < min{L(t)|t∈I};(ii) min{L(s)|s ∈J} ≥L(w_0);(iii) there exists some t ∈ I satisfying L(t) < L(s) for any s ∈I-{t} and L takes a constant value L_J on J with L_J in some subintervals of [1, L(w_0)-1]. The results in the case(iii) are obtained under a certain assumption on(W, W_I).
基金supported by the NEPU Natural Science Foundation under Grants Nos.2017PY ZL05,2018QNL-51,JY CX CX062018,JY CX JG062018,JY CX 142020。
文摘Salient object detection is used as a preprocess in many computer vision tasks(such as salient object segmentation,video salient object detection,etc.).When performing salient object detection,depth information can provide clues to the location of target objects,so effective fusion of RGB and depth feature information is important.In this paper,we propose a new feature information aggregation approach,weighted group integration(WGI),to effectively integrate RGB and depth feature information.We use a dual-branch structure to slice the input RGB image and depth map separately and then merge the results separately by concatenation.As grouped features may lose global information about the target object,we also make use of the idea of residual learning,taking the features captured by the original fusion method as supplementary information to ensure both accuracy and completeness of the fused information.Experiments on five datasets show that our model performs better than typical existing approaches for four evaluation metrics.
文摘The blockwise Alperin weight conjecture assets that for any finite group G and any prime l, the number of the Brauer characters in an l-block B equals the number of the G-conjugacy classes of l-weights belonging to B. Recently, the inductive blockwise Alperin weight condition has been introduced such that the blockwise Alperin weight conjecture holds if all non-abelian simple groups satisfy these conditions. We will verify the inductive blockwise Alperin weight condition for the finite simple groups PSL(3, q) in this paper.