期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于改进Cascade Mask R-CNN与协同注意力机制的群猪姿态识别 被引量:8
1
作者 王鲁 刘晴 +1 位作者 曹月 郝霞 《农业工程学报》 EI CAS CSCD 北大核心 2023年第4期144-153,共10页
猪体姿态识别有助于实现猪只健康状况预警、预防猪病爆发,是当前研究热点。针对复杂场景下群猪容易相互遮挡、粘连,姿态识别困难的问题,该研究提出一种实例分割与协同注意力机制相结合的两阶段群猪姿态识别方法。首先,以Cascade Mask R-... 猪体姿态识别有助于实现猪只健康状况预警、预防猪病爆发,是当前研究热点。针对复杂场景下群猪容易相互遮挡、粘连,姿态识别困难的问题,该研究提出一种实例分割与协同注意力机制相结合的两阶段群猪姿态识别方法。首先,以Cascade Mask R-CNN作为基准网络,结合HrNetV2和FPN模块构建猪体检测与分割模型,解决猪体相互遮挡、粘连等问题,实现复杂环境下群猪图像的高精度检测与分割;在上述提取单只猪基础上,构建了基于协同注意力机制(coordinate attention,CA)的轻量级猪体姿态识别模型(CA-MobileNetV3),实现猪体姿态的精准快速识别。最后,在自标注数据集上的试验结果表明,在猪体分割与检测环节,该研究所提模型与MaskR-CNN、MSR-CNN模型相比,在AP_(0.50)、AP_(0.75)、AP_(0.50:0.95)和AP_(0.5:0.95-large)指标上最多提升了1.3、1.5、6.9和8.8个百分点,表现出最优的分割与检测性能。而在猪体姿态识别环节,所提CA-MobileNetV3模型在跪立、站立、躺卧、坐立4种姿态类上的准确率分别为96.9%、99.1%、99.5%和98.6%,其性能优于主流的MobileNetV3、ResNet50、DenseNet121和VGG16模型,由此可知,该研究模型在复杂环境下群猪姿态识别具有良好的准确性和有效性,为实现猪体姿态的精准快速识别提供方法支撑。 展开更多
关键词 深度学习 图像识别 实例分割 群猪姿态识别 生猪个体提取
下载PDF
改进帧间差分-深度学习识别群养猪只典型行为 被引量:4
2
作者 曾繁国 朱君 +4 位作者 王海峰 贾楠 赵宇亮 赵文文 李斌 《农业工程学报》 EI CAS CSCD 北大核心 2022年第15期170-178,共9页
群养猪行为是评估猪群对环境适应性的重要指标。猪场环境中,猪只行为识别易受不同光线和猪只粘连等因素影响,为提高群养猪只行为识别精度与效率,该研究提出一种基于改进帧间差分-深度学习的群养猪只饮食、躺卧、站立和打斗等典型行为识... 群养猪行为是评估猪群对环境适应性的重要指标。猪场环境中,猪只行为识别易受不同光线和猪只粘连等因素影响,为提高群养猪只行为识别精度与效率,该研究提出一种基于改进帧间差分-深度学习的群养猪只饮食、躺卧、站立和打斗等典型行为识别方法。该研究以18只50~115日龄长白猪为研究对象,采集视频帧1117张,经图像增强共得到4468张图像作为数据集。首先,选取Faster R-CNN、SSD、Retinanet、Detection Transformer和YOLOv5五种典型深度学习模型进行姿态检测研究,通过对比分析,确定了最优姿态检测模型;然后,对传统帧间差分法进行了改进,改进后帧间差分法能有效提取猪只完整的活动像素特征,使检测结果接近实际运动猪只目标;最后,引入打斗活动比例(Proportion of Fighting Activities,PFA)和打斗行为比例(Proportion of Fighting Behavior,PFB)2个指标优化猪只打斗行为识别模型,并对模型进行评价,确定最优行为模型。经测试,YOLOv5对群养猪只典型姿态检测平均精度均值达93.80%,模型大小为14.40MB,检测速度为32.00帧/s,检测速度满足姿态实时检测需求,与FasterR-CNN、SSD、Retinanet和DetectionTransformer模型相比,YOLOv5平均精度均值分别提高了1.10、3.23、4.15和21.20个百分点,模型大小分别减小了87.31%、85.09%、90.15%和97.10%。同时,当两个优化指标PFA和PFB分别设置为10%和40%时,猪只典型行为识别结果最佳,识别准确率均值为94.45%。结果表明,该方法具有准确率高、模型小和识别速度快等优点。该研究为群养猪只典型行为精准高效识别提供方法参考。 展开更多
关键词 深度学习 识别 群养猪只 姿态检测
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部