期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Intrusion Detection Method Based on Improved Growing Hierarchical Self-Organizing Map 被引量:2
1
作者 张亚平 布文秀 +2 位作者 苏畅 王璐瑶 许涵 《Transactions of Tianjin University》 EI CAS 2016年第4期334-338,共5页
Considering that growing hierarchical self-organizing map(GHSOM) ignores the influence of individual component in sample vector analysis, and its accurate rate in detecting unknown network attacks is relatively lower,... Considering that growing hierarchical self-organizing map(GHSOM) ignores the influence of individual component in sample vector analysis, and its accurate rate in detecting unknown network attacks is relatively lower, an improved GHSOM method combined with mutual information is proposed. After theoretical analysis, experiments are conducted to illustrate the effectiveness of the proposed method by accurately clustering the input data. Based on different clusters, the complex relationship within the data can be revealed effectively. 展开更多
关键词 growing hierarchical self-organizing map(GHSOM) hierarchical structure mutual information intrusion detection network security
下载PDF
Artificial Neural Network for Misuse Detection 被引量:1
2
作者 Laheeb Mohammad Ibrahim 《通讯和计算机(中英文版)》 2010年第6期38-48,共11页
关键词 人工神经网络 滥用检测 ELMAN神经网络 入侵检测系统 计算机网络 攻击者 智能方法 网络流量
下载PDF
SDN场景中基于双向流量特征的DDoS攻击检测方法 被引量:10
3
作者 陈超 曹晓梅 《计算机应用研究》 CSCD 北大核心 2019年第7期2148-2153,共6页
传统网络资源的分布式特性使得管理员较难实现网络的集中管控,在分布式拒绝服务攻击发生时难以快速准确地检出攻击并溯源。针对这一问题,结合软件定义网络集中管控、动态管理的优势和分布式拒绝服务攻击特点,引入双向流量概念,提出了攻... 传统网络资源的分布式特性使得管理员较难实现网络的集中管控,在分布式拒绝服务攻击发生时难以快速准确地检出攻击并溯源。针对这一问题,结合软件定义网络集中管控、动态管理的优势和分布式拒绝服务攻击特点,引入双向流量概念,提出了攻击检测四元组特征,并利用增长型分层自组织映射算法对网络流中提取的四元组特征向量快速准确地分析并分类,同时提出了一种通过自适应改变监控流表粒度以定位潜在受害者的检测方法。仿真实验结果表明,提出的四元组特征及下发适量监控流表项的检测算法能以近似96%的准确率检出攻击并定位受害者,且对控制器造成的计算开销较小。 展开更多
关键词 软件定义网络 双向流量 四元组特征 分布式拒绝服务攻击 增长型分层自组织映射
下载PDF
基于生长分层自组织映射网络的岩性识别模型 被引量:1
4
作者 李中亚 韩家新 杜美华 《石油矿场机械》 2007年第12期10-13,共4页
针对复杂类型油气储层的岩性识别难的问题,提出了一种新的基于生长分层自组织映射网络的岩性识别模型,并对金衢盆地金66测井数据进行仿真试验。结果表明,它是一种操作简便、易于实现的模型;既保留了自组织映射网络的优点,又具备其自身... 针对复杂类型油气储层的岩性识别难的问题,提出了一种新的基于生长分层自组织映射网络的岩性识别模型,并对金衢盆地金66测井数据进行仿真试验。结果表明,它是一种操作简便、易于实现的模型;既保留了自组织映射网络的优点,又具备其自身的优势;不但能对输入数据进行正确的聚类,而且能将输人数据中的层次继承关系直观地展现出来,从而可进一步提取出输入数据的共性与特性,并有助于对高维数据的深层次分析。在复杂的油气藏领域中可以应用生长分层自组织映射网络进行岩性识别,具有广泛的应用前景。 展开更多
关键词 生长分层自组织映射网络 自组织映射 岩性识别 聚类
下载PDF
Applied Fault Detection and Diagnosis for Industrial Gas Turbine Systems 被引量:1
5
作者 Yu Zhang Chris Bingham +1 位作者 Mike Garlick Michael Gallimore 《International Journal of Automation and computing》 EI CSCD 2017年第4期463-473,共11页
The paper presents readily implementable approaches for fault detection and diagnosis (FDD) based on measurements from multiple sensor groups, for industrial systems. Specifically, the use of hierarchical clustering... The paper presents readily implementable approaches for fault detection and diagnosis (FDD) based on measurements from multiple sensor groups, for industrial systems. Specifically, the use of hierarchical clustering (HC) and self-organizing map neural networks (SOMNNs) are shown to provide robust and user-friendly tools for application to industrial gas turbine (IGT) systems. HC fingerprints are found for normal operation, and FDD is achieved by monitoring cluster changes occurring in the resulting dendrograms. Similarly, fingerprints of operational behaviour are also obtained using SOMNN based classification maps (CMs) that are initially determined during normal operation, and FDD is performed by detecting changes in their CMs. The proposed methods are shown to be capable of FDD from a large group of sensors that measure a variety of physical quantities. A key feature of the paper is the development of techniques to accommodate transient system operation, which can often lead to false-alarms being triggered when using traditional techniques if the monitoring algorithms are not first desensitized. Case studies showing the efficacy of the techniques for detecting sensor faults, bearing tilt pad wear and early stage pre-chamber burnout, are included. The presented techniques are now being applied operationally and monitoring IGTs in various regions of the world. 展开更多
关键词 Fault detection and diagnosis hierarchical clustering self-organizing map neural network.
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部