期刊文献+
共找到33篇文章
< 1 2 >
每页显示 20 50 100
Application of Self-Organizing Feature Map Neural Network Based on K-means Clustering in Network Intrusion Detection 被引量:5
1
作者 Ling Tan Chong Li +1 位作者 Jingming Xia Jun Cao 《Computers, Materials & Continua》 SCIE EI 2019年第7期275-288,共14页
Due to the widespread use of the Internet,customer information is vulnerable to computer systems attack,which brings urgent need for the intrusion detection technology.Recently,network intrusion detection has been one... Due to the widespread use of the Internet,customer information is vulnerable to computer systems attack,which brings urgent need for the intrusion detection technology.Recently,network intrusion detection has been one of the most important technologies in network security detection.The accuracy of network intrusion detection has reached higher accuracy so far.However,these methods have very low efficiency in network intrusion detection,even the most popular SOM neural network method.In this paper,an efficient and fast network intrusion detection method was proposed.Firstly,the fundamental of the two different methods are introduced respectively.Then,the selforganizing feature map neural network based on K-means clustering(KSOM)algorithms was presented to improve the efficiency of network intrusion detection.Finally,the NSLKDD is used as network intrusion data set to demonstrate that the KSOM method can significantly reduce the number of clustering iteration than SOM method without substantially affecting the clustering results and the accuracy is much higher than Kmeans method.The Experimental results show that our method can relatively improve the accuracy of network intrusion and significantly reduce the number of clustering iteration. 展开更多
关键词 K-means clustering self-organizing feature map neural network network security intrusion detection NSL-KDD data set
下载PDF
CLUSTERING PROPERTIES OF FUZZY KOHONEN'S SELF-ORGANIZING FEATURE MAPS 被引量:3
2
作者 彭磊 胡征 《Journal of Electronics(China)》 1995年第2期124-133,共10页
A new clustering algorithm called fuzzy self-organizing feature maps is introduced. It can process not only the exact digital inputs, but also the inexact or fuzzy non-digital inputs, such as natural language inputs. ... A new clustering algorithm called fuzzy self-organizing feature maps is introduced. It can process not only the exact digital inputs, but also the inexact or fuzzy non-digital inputs, such as natural language inputs. Simulation results show that the new algorithm is superior to original Kohonen’s algorithm in clustering performance and learning rate. 展开更多
关键词 self-organizing feature mapS FUZZY sets MEMBERSHIP measure FUZZINESS mea-sure
下载PDF
Intrusion Detection Method Based on Improved Growing Hierarchical Self-Organizing Map 被引量:2
3
作者 张亚平 布文秀 +2 位作者 苏畅 王璐瑶 许涵 《Transactions of Tianjin University》 EI CAS 2016年第4期334-338,共5页
Considering that growing hierarchical self-organizing map(GHSOM) ignores the influence of individual component in sample vector analysis, and its accurate rate in detecting unknown network attacks is relatively lower,... Considering that growing hierarchical self-organizing map(GHSOM) ignores the influence of individual component in sample vector analysis, and its accurate rate in detecting unknown network attacks is relatively lower, an improved GHSOM method combined with mutual information is proposed. After theoretical analysis, experiments are conducted to illustrate the effectiveness of the proposed method by accurately clustering the input data. Based on different clusters, the complex relationship within the data can be revealed effectively. 展开更多
关键词 growing hierarchical self-organizing map(GHSOM) hierarchical structure mutual information intrusion detection network security
下载PDF
The Testing Intelligence System Based on Factor Models and Self-Organizing Feature Maps
4
作者 A.S. Panfilova L.S. Kuravsky 《Journal of Mathematics and System Science》 2013年第7期353-358,共6页
Presented is a new testing system based on using the factor models and self-organizing feature maps as well as the method of filtering undesirable environment influence. Testing process is described by the factor mode... Presented is a new testing system based on using the factor models and self-organizing feature maps as well as the method of filtering undesirable environment influence. Testing process is described by the factor model with simplex structure, which represents the influences of genetics and environmental factors on the observed parameters - the answers to the questions of the test subjects in one case and for the time, which is spent on responding to each test question to another. The Monte Carlo method is applied to get sufficient samples for training self-organizing feature maps, which are used to estimate model goodness-of-fit measures and, consequently, ability level. A prototype of the system is implemented using the Raven's Progressive Matrices (Advanced Progressive Matrices) - an intelligence test of abstract reasoning. Elimination of environment influence results is performed by comparing the observed and predicted answers to the test tasks using the Kalman filter, which is adapted to solve the problem. The testing procedure is optimized by reducing the number of tasks using the distribution of measures to belong to different ability levels after performing each test task provided the required level of conclusion reliability is obtained. 展开更多
关键词 self-organizing feature maps intelligence testing Kalman filter
下载PDF
Feature Extraction of Kernel Regress Reconstruction for Fault Diagnosis Based on Self-organizing Manifold Learning 被引量:3
5
作者 CHEN Xiaoguang LIANG Lin +1 位作者 XU Guanghua LIU Dan 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2013年第5期1041-1049,共9页
The feature space extracted from vibration signals with various faults is often nonlinear and of high dimension.Currently,nonlinear dimensionality reduction methods are available for extracting low-dimensional embeddi... The feature space extracted from vibration signals with various faults is often nonlinear and of high dimension.Currently,nonlinear dimensionality reduction methods are available for extracting low-dimensional embeddings,such as manifold learning.However,these methods are all based on manual intervention,which have some shortages in stability,and suppressing the disturbance noise.To extract features automatically,a manifold learning method with self-organization mapping is introduced for the first time.Under the non-uniform sample distribution reconstructed by the phase space,the expectation maximization(EM) iteration algorithm is used to divide the local neighborhoods adaptively without manual intervention.After that,the local tangent space alignment(LTSA) algorithm is adopted to compress the high-dimensional phase space into a more truthful low-dimensional representation.Finally,the signal is reconstructed by the kernel regression.Several typical states include the Lorenz system,engine fault with piston pin defect,and bearing fault with outer-race defect are analyzed.Compared with the LTSA and continuous wavelet transform,the results show that the background noise can be fully restrained and the entire periodic repetition of impact components is well separated and identified.A new way to automatically and precisely extract the impulsive components from mechanical signals is proposed. 展开更多
关键词 feature extraction manifold learning self-organize mapping kernel regression local tangent space alignment
下载PDF
English-Chinese Neural Machine Translation Based on Self-organizing Mapping Neural Network and Deep Feature Matching
6
作者 Shu Ma 《IJLAI Transactions on Science and Engineering》 2024年第3期1-8,共8页
The traditional Chinese-English translation model tends to translate some source words repeatedly,while mistakenly ignoring some words.Therefore,we propose a novel English-Chinese neural machine translation based on s... The traditional Chinese-English translation model tends to translate some source words repeatedly,while mistakenly ignoring some words.Therefore,we propose a novel English-Chinese neural machine translation based on self-organizing mapping neural network and deep feature matching.In this model,word vector,two-way LSTM,2D neural network and other deep learning models are used to extract the semantic matching features of question-answer pairs.Self-organizing mapping(SOM)is used to classify and identify the sentence feature.The attention mechanism-based neural machine translation model is taken as the baseline system.The experimental results show that this framework significantly improves the adequacy of English-Chinese machine translation and achieves better results than the traditional attention mechanism-based English-Chinese machine translation model. 展开更多
关键词 Chinese-English translation model self-organizing mapping neural network Deep feature matching Deep learning
原文传递
Self-organizing feature map neural network classification of the ASTER data based on wavelet fusion 被引量:7
7
作者 HASI Bagan MA Jianwen LI Qiqing HAN Xiuzhen LIU Zhili 《Science China Earth Sciences》 SCIE EI CAS 2004年第7期651-658,共8页
Most methods for classification of remote sensing data are based on the statistical parameter evaluation with the assumption that the samples obey the normal distribution. How-ever, more accurate classification result... Most methods for classification of remote sensing data are based on the statistical parameter evaluation with the assumption that the samples obey the normal distribution. How-ever, more accurate classification results can be obtained with the neural network method through getting knowledge from environments and adjusting the parameter (or weight) step by step by a specific measurement. This paper focuses on the double-layer structured Kohonen self-organizing feature map (SOFM), for which all neurons within the two layers are linked one another and those of the competition layers are linked as well along the sides. Therefore, the self-adapting learning ability is improved due to the effective competition and suppression in this method. The SOFM has become a hot topic in the research area of remote sensing data classi-fication. The Advanced Spaceborne Thermal Emission and Reflectance Radiometer (ASTER) is a new satellite-borne remote sensing instrument with three 15-m resolution bands and three 30-m resolution bands at the near infrared. The ASTER data of Dagang district, Tianjin Munici-pality is used as the test data in this study. At first, the wavelet fusion is carried out to make the spatial resolutions of the ASTER data identical; then, the SOFM method is applied to classifying the land cover types. The classification results are compared with those of the maximum likeli-hood method (MLH). As a consequence, the classification accuracy of SOFM increases about by 7% in general and, in particular, it is almost as twice as that of the MLH method in the town. 展开更多
关键词 classification WAVELET fusion self-organizing NEURAL network feature map (SOFM) ASTER data.
原文传递
Pattern recognition of messily grown nanowire morphologies applying multi-layer connected self-organized feature maps
8
作者 Qing Liu Hejun Li +1 位作者 Yulei Zhang Zhigang Zhao 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2019年第5期946-956,共11页
Multi-layer connected self-organizing feature maps(SOFMs) and the associated learning procedure were proposed to achieve efficient recognition and clustering of messily grown nanowire morphologies. The network is made... Multi-layer connected self-organizing feature maps(SOFMs) and the associated learning procedure were proposed to achieve efficient recognition and clustering of messily grown nanowire morphologies. The network is made up by several paratactic 2-D SOFMs with inter-layer connections. By means of Monte Carlo simulations, virtual morphologies were generated to be the training samples. With the unsupervised inner-layer and inter-layer learning, the neural network can cluster different morphologies of messily grown nanowires and build connections between the morphological microstructure and geometrical features of nanowires within. Then, the as-proposed networks were applied on recognitions and quantitative estimations of the experimental morphologies. Results show that the as-trained SOFMs are able to cluster the morphologies and recognize the average length and quantity of the messily grown nanowires within. The inter-layer connections between winning neurons on each competitive layer have significant influence on the relations between the microstructure of the morphology and physical parameters of the nanowires within. 展开更多
关键词 Artificial neural networks self-organizing feature maps MONTE Carlo simulation Pattern recognition Messily grown NANOWIRE MORPHOLOGIES
原文传递
Visualization of amino acid composition differences between processed protein from different animal species by self-organizing feature maps
9
作者 Xingfan ZHOU Zengling YANG +1 位作者 Longjian CHEN Lujia HAN 《Frontiers of Agricultural Science and Engineering》 2016年第2期171-180,共10页
Amino acids are the dominant organic components of processed animal proteins,however there has been limited investigation of differences in their composition between various protein sources.Information on these differ... Amino acids are the dominant organic components of processed animal proteins,however there has been limited investigation of differences in their composition between various protein sources.Information on these differences will not only be helpful for their further utilization but also provide fundamental information for developing species-specific identification methods.In this study,self-organizing feature maps(SOFM) were used to visualize amino acid composition of fish meal,and meat and bone meal(MBM) produced from poultry,ruminants and swine.SOFM display the similarities and differences in amino acid composition between protein sources and effectively improve data transparency.Amino acid composition was shown to be useful for distinguishing fish meal from MBM due to their large concentration differences between glycine,lysine and proline.However,the amino acid composition of the three MBMs was quite similar.The SOFM results were consistent with those obtained by analysis of variance and principal component analysis but more straightforward.SOFM was shown to have a robust sample linkage capacity and to be able to act as a powerful means to link different sample for further data mining. 展开更多
关键词 self-organizing feature maps VISUALIZATION processed animal proteins(PAPs) amino acid
原文传递
Pattern recognition of seismogenic nodes using Kohonen selforganizing map: example in west and south west of Alborz region in Iran
10
作者 Mostafa Allamehzadeh Soma Durudi Leila Mahshadnia 《Earthquake Science》 CSCD 2017年第3期145-155,共11页
Pattern recognition of seismic and mor- phostructural nodes plays an important role in seismic hazard assessment. This is a known fact in seismology that tectonic nodes are prone areas to large earthquake and have thi... Pattern recognition of seismic and mor- phostructural nodes plays an important role in seismic hazard assessment. This is a known fact in seismology that tectonic nodes are prone areas to large earthquake and have this potential. They are identified by morphostructural analysis. In this study, the Alborz region has considered as studied case and locations of future events are forecast based on Kohonen Self-Organized Neural Network. It has been shown how it can predict the location of earthquake, and identifies seismogenic nodes which are prone to earthquake of M5.5+ at the West of Alborz in Iran by using International Institute Earthquake Engineering and Seismology earthquake catalogs data. First, the main faults and tectonic lineaments have been identified based on MZ (land zoning method) method. After that, by using pattern recognition, we generalized past recorded events to future in order to show the region of probable future earthquakes. In other word, hazardous nodes have determined among all nodes by new catalog generated Self-organizing feature maps (SOFM). Our input data are extracted from catalog, consists longitude and latitude of past event between 1980-2015 with magnitude larger or equal to 4.5. It has concluded node D1 is candidate for big earthquakes in comparison with other nodes and other nodes are in lower levels of this potential. 展开更多
关键词 Clustering - Earthquake prediction ~ self-organizing feature maps (SOFM)
下载PDF
SDN场景中基于双向流量特征的DDoS攻击检测方法 被引量:10
11
作者 陈超 曹晓梅 《计算机应用研究》 CSCD 北大核心 2019年第7期2148-2153,共6页
传统网络资源的分布式特性使得管理员较难实现网络的集中管控,在分布式拒绝服务攻击发生时难以快速准确地检出攻击并溯源。针对这一问题,结合软件定义网络集中管控、动态管理的优势和分布式拒绝服务攻击特点,引入双向流量概念,提出了攻... 传统网络资源的分布式特性使得管理员较难实现网络的集中管控,在分布式拒绝服务攻击发生时难以快速准确地检出攻击并溯源。针对这一问题,结合软件定义网络集中管控、动态管理的优势和分布式拒绝服务攻击特点,引入双向流量概念,提出了攻击检测四元组特征,并利用增长型分层自组织映射算法对网络流中提取的四元组特征向量快速准确地分析并分类,同时提出了一种通过自适应改变监控流表粒度以定位潜在受害者的检测方法。仿真实验结果表明,提出的四元组特征及下发适量监控流表项的检测算法能以近似96%的准确率检出攻击并定位受害者,且对控制器造成的计算开销较小。 展开更多
关键词 软件定义网络 双向流量 四元组特征 分布式拒绝服务攻击 增长型分层自组织映射
下载PDF
基于SLIC和改进区域生长的非结构化道路识别 被引量:1
12
作者 谢习华 王刚 +1 位作者 辛涛 赵喻明 《计算机工程与应用》 CSCD 北大核心 2022年第14期210-218,共9页
非结构化道路一般没有车道标识线且道路边界模糊,区分道路区域与背景区域难度较大。针对现有非结构化道路识别方法存在全像素域计算分类处理实时性差、易受噪声数据干扰等问题,提出一种基于SLIC(simple lineariterativeclustering)超像... 非结构化道路一般没有车道标识线且道路边界模糊,区分道路区域与背景区域难度较大。针对现有非结构化道路识别方法存在全像素域计算分类处理实时性差、易受噪声数据干扰等问题,提出一种基于SLIC(simple lineariterativeclustering)超像素分割和改进区域生长算法的非结构化道路识别方法。利用均匀化初始聚类中心的SLIC算法生成低分辨率超像素特征图。在此基础上,利用聚类算法与邻域搜索算法自适应选择种子点,并引入CIEDE2000色差理论作为区域生长法生长准则,初步确定道路区域。根据道路连续一致特点,优化超像素级生长图并映射轮廓区域至原图,获得道路最终区域。基于数据集及真实场景的实验结果表明,该方法具有较高的识别率和抗干扰能力。 展开更多
关键词 非结构化道路 简单线性迭代聚类(SLIC) 超像素特征图 CIEDE2000 区域生长算法
下载PDF
一种增长型自组织特征映射文本聚类方法 被引量:1
13
作者 张颖超 李继扬 《价值工程》 2012年第16期167-168,共2页
为建设和谐文明的网络环境,提升对网络不良文本信息的识别和应对能力。文章使用一种新颖的基于增长型自组织特征映射(GSOFM)和潜在语义索引(LSI)相结合方法用于不良文本聚类。这两种算法的结合能够发现全局和局部的模式特点。实验在相... 为建设和谐文明的网络环境,提升对网络不良文本信息的识别和应对能力。文章使用一种新颖的基于增长型自组织特征映射(GSOFM)和潜在语义索引(LSI)相结合方法用于不良文本聚类。这两种算法的结合能够发现全局和局部的模式特点。实验在相同的条件下使用了这种新颖的模式并和单一的GSOFM相比较。实验结果证明:这种新的两种技术的结合与单一的GSOFM方法相比提高了聚类结果的精确性,缩短了计算时间,为网络不良文本聚类提供了一种较好的方法。 展开更多
关键词 增长型自组织特征映射 不良文本聚类 潜在语义索引
下载PDF
第二语言学习者汉语声调范畴浮现的模拟研究
14
作者 陈默 《中文信息学报》 CSCD 北大核心 2012年第1期119-127,共9页
第二语言学习者汉语声调范畴的习得一直是汉语学习的难点之一。为了深入研究声调范畴的认知机制,该研究采用动态的生长型树形自组织映射模型,模拟了英语母语者汉语声调范畴的认知发展过程。由于新发展的自组织模型既具有良好的拓扑映射... 第二语言学习者汉语声调范畴的习得一直是汉语学习的难点之一。为了深入研究声调范畴的认知机制,该研究采用动态的生长型树形自组织映射模型,模拟了英语母语者汉语声调范畴的认知发展过程。由于新发展的自组织模型既具有良好的拓扑映射性,又具有动态的容量扩展性,所以能很好地模拟英语母语者汉语声调范畴认知的动态发展过程。模拟结果跟行为实验结果呈现出非常好的一致性,这样既证明了行为实验中汉语声调范畴的动态发展过程,也为汉语声调认知范畴的机制研究提供了机理上的解释。通过对声调范畴习得过程中的一些模式和机制的研究,为声调教学提出了一些有益的建议。 展开更多
关键词 声调范畴 计算机模拟 生长型树形结构自组织映射模型
下载PDF
双目视觉下基于区域生长的三维人脸重建算法 被引量:3
15
作者 夏颖 盖绍彦 达飞鹏 《计算机应用研究》 CSCD 北大核心 2021年第3期932-936,共5页
为解决传统立体匹配算法匹配低纹理人脸图像时极易产生误匹配的问题,提出一种基于区域生长的人脸立体匹配算法。该算法利用级联回归树算法提取的人脸特征点将人脸划分为不同区域以分别限制各区域的视差搜索范围,从而避免在全局范围上查... 为解决传统立体匹配算法匹配低纹理人脸图像时极易产生误匹配的问题,提出一种基于区域生长的人脸立体匹配算法。该算法利用级联回归树算法提取的人脸特征点将人脸划分为不同区域以分别限制各区域的视差搜索范围,从而避免在全局范围上查找匹配点;同时利用人脸的局部形状特性,采用局部曲面拟合的方式筛除误匹配种子点并生成大量可靠种子点用于区域生长;最后,分别在实验室环境采集的人脸图像和FRGC v2.0人脸数据库上进行定性和定量实验。实验结果表明,与传统算法相比,所提算法能够重建出更加准确的三维人脸模型。经点云配准后与人脸点云真实值的均方根误差在2 mm以内,且不同光照、姿态、表情下人脸图像的重建表明所改进的立体匹配算法具有较好的鲁棒性。 展开更多
关键词 三维人脸重建 视差图 双目视觉 立体匹配 区域生长 人脸特征点
下载PDF
一种生长型自组织神经网络的聚类研究 被引量:1
16
作者 傅雪 张少白 《计算机技术与发展》 2011年第3期64-66,71,共4页
自组织特征映射神经网络SOM(Self-Organizing Feature Maps)是一种优良的聚类工具,但其存在着一些限制,如需要预先定义网络大小、网络的收敛性较差和结构不灵活等。为了克服这些不足,在自组织神经网络理论的指导下,提出了一种基于生长... 自组织特征映射神经网络SOM(Self-Organizing Feature Maps)是一种优良的聚类工具,但其存在着一些限制,如需要预先定义网络大小、网络的收敛性较差和结构不灵活等。为了克服这些不足,在自组织神经网络理论的指导下,提出了一种基于生长型自组织神经网络的聚类方法。在无监督的情况下,该方法采用阈值控制的触发机制实现网络中神经元的生长和删除,并通过神经元权值的有效调整,以期得到数据对象的聚类结果。实验以二维空间中的数据对象为输入样本,验证了该方法的有效性和优越性。 展开更多
关键词 自组织 生长 特征映射 聚类 神经网络
下载PDF
一种实时的三维语义地图生成方法 被引量:2
17
作者 吴凡 闵华松 《计算机工程与应用》 CSCD 北大核心 2017年第6期67-72,共6页
为了提高模块化机械臂分拣作业效率,研究了一种实时三维语义地图生成方法。该方法设计了一种改进的区域增长分割算法提高了分割效率和准确性,通过基于距离阈值的特征匹配方法得到候选模型,采用随机采样一致性(RANSAC)和迭代最近点算法(I... 为了提高模块化机械臂分拣作业效率,研究了一种实时三维语义地图生成方法。该方法设计了一种改进的区域增长分割算法提高了分割效率和准确性,通过基于距离阈值的特征匹配方法得到候选模型,采用随机采样一致性(RANSAC)和迭代最近点算法(ICP)生成转变假设并对候选模型进行验证,获取物体位姿信息,保存于XML地图文件中,将其与机械臂末端位姿进行推理分析,得到抓取任务轨迹。实验结果表明,该方法满足作业实时性与准确性的要求。 展开更多
关键词 三维物体识别 区域增长 语义地图构建 内在形状特征(ISS)算法 基于颜色与签名的方向直方图(CSHOT)局部特征描述子
下载PDF
Self-organizing dual clustering considering spatial analysis and hybrid distance measures 被引量:10
18
作者 JIAO LiMin LIU YaoLin ZOU Bin 《Science China Earth Sciences》 SCIE EI CAS 2011年第8期1268-1278,共11页
Dual clustering performs object clustering in both spatial and non-spatial domains that cannot be dealt with well by traditional clustering methods.However,recent dual clustering research has often omitted spatial out... Dual clustering performs object clustering in both spatial and non-spatial domains that cannot be dealt with well by traditional clustering methods.However,recent dual clustering research has often omitted spatial outliers,subjectively determined the weights of hybrid distance measures,and produced diverse clustering results.In this study,we first redefined the dual clustering problem and related concepts to highlight the clustering criteria.We then presented a self-organizing dual clustering algorithm (SDC) based on the self-organizing feature map and certain spatial analysis operations,including the Voronoi diagram and polygon aggregation and amalgamation.The algorithm employs a hybrid distance measure that combines geometric distance and non-spatial similarity,while the clustering spectrum analysis helps to determine the weight of non-spatial similarity in the measure.A case study was conducted on a spatial database of urban land price samples in Wuhan,China.SDC detected spatial outliers and clustered the points into spatially connective and attributively homogenous sub-groups.In particular,SDC revealed zonal areas that describe the actual distribution of land prices but were not demonstrated by other methods.SDC reduced the subjectivity in dual clustering. 展开更多
关键词 dual clustering DATAMINING self-organizing feature map Voronoi diagram
原文传递
夜间静止卫星红外云图的GHSOM网络云分类模型 被引量:1
19
作者 闫廷亚 王杉 《江西师范大学学报(自然科学版)》 CAS 北大核心 2015年第4期383-388,410,共7页
针对夜间云分类准确率低下的问题,利用奇异值分解方法对FY-2E夜间红外云图进行特征提取和选择,从中筛选出包括亮温和分裂窗差值在内的不同的纹理特征.分别采用动态增长型分层自组织和自组织映射2种神经网络模型对夜间云图进行分类,并将... 针对夜间云分类准确率低下的问题,利用奇异值分解方法对FY-2E夜间红外云图进行特征提取和选择,从中筛选出包括亮温和分裂窗差值在内的不同的纹理特征.分别采用动态增长型分层自组织和自组织映射2种神经网络模型对夜间云图进行分类,并将2种网络模型的分类效果进行对比分析.实验结果表明:GHSOM网络模型在夜间云图分类方面效果较好,平均准确率总体上高于SOM,通过分层的分类方法极大地提高了夜间云图的分类准确率. 展开更多
关键词 动态增长型分层自组织 自组织映射 夜间云图 云分类
下载PDF
Turnout fault diagnosis based on DBSCAN/PSO-SOM 被引量:3
20
作者 YANG Juhua LI Xutong +1 位作者 XING Dongfeng CHEN Guangwu 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2022年第3期371-378,共8页
In order to diagnose the common faults of railway switch control circuit,a fault diagnosis method based on density-based spatial clustering of applications with noise(DBSCAN)and self-organizing feature map(SOM)is prop... In order to diagnose the common faults of railway switch control circuit,a fault diagnosis method based on density-based spatial clustering of applications with noise(DBSCAN)and self-organizing feature map(SOM)is proposed.Firstly,the three-phase current curve of the switch machine recorded by the micro-computer monitoring system is dealt with segmentally and then the feature parameters of the three-phase current are calculated according to the action principle of the switch machine.Due to the high dimension of initial features,the DBSCAN algorithm is used to separate the sensitive features of fault diagnosis and construct the diagnostic sensitive feature set.Then,the particle swarm optimization(PSO)algorithm is used to adjust the weight of SOM network to modify the rules to avoid“dead neurons”.Finally,the PSO-SOM network fault classifier is designed to complete the classification and diagnosis of the samples to be tested.The experimental results show that this method can judge the fault mode of switch control circuit with less training samples,and the accuracy of fault diagnosis is higher than that of traditional SOM network. 展开更多
关键词 TURNOUT fault diagnosis density-based spatial clustering of applications with noise(DBSCAN) particle swarm optimization(PSO) self-organizing feature map(SOM)
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部