Growth and yield models were developed for individual tress and stands based on 336 temporary plots with 405 stem analysis trees of dahurian larch ( Larix gmelinii( Rupr. )Rupr.) plantations throughout Daxing'anli...Growth and yield models were developed for individual tress and stands based on 336 temporary plots with 405 stem analysis trees of dahurian larch ( Larix gmelinii( Rupr. )Rupr.) plantations throughout Daxing'anling mountains. Several equations were selected using nonlinear regression analysis. Results showed that the Richards equation was the best model for estimating tree height, stand mean height and stand dominant height from age; The Power equation was the best model for prediction tree volume from DBH and tree height; The logarithmic stand volume equation was good for predicting stand volume from age, mean height, basal area and other stand variables. These models can be used to construct the volume table, the site index table and other forestry tables for dahurian larch plantations.展开更多
Forest management planning often relies on Airborne Laser Scanning(ALS)-based Forest Management Inventories(FMIs)for sustainable and efficient decision-making.Employing the area-based(ABA)approach,these inventories es...Forest management planning often relies on Airborne Laser Scanning(ALS)-based Forest Management Inventories(FMIs)for sustainable and efficient decision-making.Employing the area-based(ABA)approach,these inventories estimate forest characteristics for grid cell areas(pixels),which are then usually summarized at the stand level.Using the ALS-based high-resolution Norwegian Forest Resource Maps(16 m×16 m pixel resolution)alongside with stand-level growth and yield models,this study explores the impact of three levels of pixel aggregation(standlevel,stand-level with species strata,and pixel-level)on projected stand development.The results indicate significant differences in the projected outputs based on the aggregation level.Notably,the most substantial difference in estimated volume occurred between stand-level and pixel-level aggregation,ranging from-301 to+253 m^(3)·ha^(-1)for single stands.The differences were,on average,higher for broadleaves than for spruce and pine dominated stands,and for mixed stands and stands with higher variability than for pure and homogenous stands.In conclusion,this research underscores the critical role of input data resolution in forest planning and management,emphasizing the need for improved data collection practices to ensure sustainable forest management.展开更多
Accurate and efficient estimation of forest growth and live biomass is a critical element in assessing potential responses to forest management and environmental change. The objective of this study was to develop mode...Accurate and efficient estimation of forest growth and live biomass is a critical element in assessing potential responses to forest management and environmental change. The objective of this study was to develop models to predict longleaf pine tree diameter at breast height (dbh) and merchantable stem volume (V) using data obtained from field measurements. We used longleaf pine tree data from 3,376 planted trees on 127 permanent plots located in the U.S. Gulf Coastal Plain region to fit equations to predict dbh and V as functions of tree height (H) and crown area (CA). Prediction of dbh as a function of H improved when CA was added as an additional independent variable. Similarly, predic- tions of V based on H improved when CA was included. Incorporation of additional stand variables such as age, site index, dominant height, and stand density were also evaluated but resulted in only small improvements in model performance. For model testing we used data from planted and naturally-regenerated trees located inside and outside the geographic area used for model fitting. Our results suggest that the models are a robust alternative for dbh and V estimations when H and CA are known on planted stands with potential for naturally-regenerated stands, across a wide range of ages. We discuss the importance of these models for use with metrics derived from remote sensing data.展开更多
文摘Growth and yield models were developed for individual tress and stands based on 336 temporary plots with 405 stem analysis trees of dahurian larch ( Larix gmelinii( Rupr. )Rupr.) plantations throughout Daxing'anling mountains. Several equations were selected using nonlinear regression analysis. Results showed that the Richards equation was the best model for estimating tree height, stand mean height and stand dominant height from age; The Power equation was the best model for prediction tree volume from DBH and tree height; The logarithmic stand volume equation was good for predicting stand volume from age, mean height, basal area and other stand variables. These models can be used to construct the volume table, the site index table and other forestry tables for dahurian larch plantations.
文摘Forest management planning often relies on Airborne Laser Scanning(ALS)-based Forest Management Inventories(FMIs)for sustainable and efficient decision-making.Employing the area-based(ABA)approach,these inventories estimate forest characteristics for grid cell areas(pixels),which are then usually summarized at the stand level.Using the ALS-based high-resolution Norwegian Forest Resource Maps(16 m×16 m pixel resolution)alongside with stand-level growth and yield models,this study explores the impact of three levels of pixel aggregation(standlevel,stand-level with species strata,and pixel-level)on projected stand development.The results indicate significant differences in the projected outputs based on the aggregation level.Notably,the most substantial difference in estimated volume occurred between stand-level and pixel-level aggregation,ranging from-301 to+253 m^(3)·ha^(-1)for single stands.The differences were,on average,higher for broadleaves than for spruce and pine dominated stands,and for mixed stands and stands with higher variability than for pure and homogenous stands.In conclusion,this research underscores the critical role of input data resolution in forest planning and management,emphasizing the need for improved data collection practices to ensure sustainable forest management.
基金supported by the U.S.Department of Defense,through the Strategic Environmental Research and Development Program(SERDP)
文摘Accurate and efficient estimation of forest growth and live biomass is a critical element in assessing potential responses to forest management and environmental change. The objective of this study was to develop models to predict longleaf pine tree diameter at breast height (dbh) and merchantable stem volume (V) using data obtained from field measurements. We used longleaf pine tree data from 3,376 planted trees on 127 permanent plots located in the U.S. Gulf Coastal Plain region to fit equations to predict dbh and V as functions of tree height (H) and crown area (CA). Prediction of dbh as a function of H improved when CA was added as an additional independent variable. Similarly, predic- tions of V based on H improved when CA was included. Incorporation of additional stand variables such as age, site index, dominant height, and stand density were also evaluated but resulted in only small improvements in model performance. For model testing we used data from planted and naturally-regenerated trees located inside and outside the geographic area used for model fitting. Our results suggest that the models are a robust alternative for dbh and V estimations when H and CA are known on planted stands with potential for naturally-regenerated stands, across a wide range of ages. We discuss the importance of these models for use with metrics derived from remote sensing data.