Mathematical models have been widely employed for the simulation of growth dynamics of annual crops,thereby performing yield prediction,but not for fruit tree species such as jujube tree(Zizyphus jujuba).The objective...Mathematical models have been widely employed for the simulation of growth dynamics of annual crops,thereby performing yield prediction,but not for fruit tree species such as jujube tree(Zizyphus jujuba).The objectives of this study were to investigate the potential use of a modified WOFOST model for predicting jujube yield by introducing tree age as a key parameter.The model was established using data collected from dedicated field experiments performed in 2016-2018.Simulated growth dynamics of dry weights of leaves,stems,fruits,total biomass and leaf area index(LAI) agreed well with measured values,showing root mean square error(RMSE) values of 0.143,0.333,0.366,0.624 t ha^-1 and 0.19,and R2 values of 0.947,0.976,0.985,0.986 and 0.95,respectively.Simulated phenological development stages for emergence,anthesis and maturity were 2,3 and 3 days earlier than the observed values,respectively.In addition,in order to predict the yields of trees with different ages,the weight of new organs(initial buds and roots) in each growing season was introduced as the initial total dry weight(TDWI),which was calculated as averaged,fitted and optimized values of trees with the same age.The results showed the evolution of the simulated LAI and yields profiled in response to the changes in TDWI.The modelling performance was significantly improved when it considered TDWI integrated with tree age,showing good global(R2≥0.856,RMSE≤0.68 t ha^-1) and local accuracies(mean R2≥0.43,RMSE≤0.70 t ha^-1).Furthermore,the optimized TDWI exhibited the highest precision,with globally validated R2 of 0.891 and RMSE of 0.591 t ha^-1,and local mean R2 of 0.57 and RMSE of 0.66 t ha^-1,respectively.The proposed model was not only verified with the confidence to accurately predict yields of jujube,but it can also provide a fundamental strategy for simulating the growth of other fruit trees.展开更多
Background: A novel approach to modelling individual tree growth dynamics is proposed. The approach combines multiple imputation and copula sampling to produce a stochastic individual tree growth and yield projection...Background: A novel approach to modelling individual tree growth dynamics is proposed. The approach combines multiple imputation and copula sampling to produce a stochastic individual tree growth and yield projection system. Methods: The Nova Scotia, Canada permanent sample plot network is used as a case study to develop and test the modelling approach. Predictions from this model are compared to predictions from the Acadian variant of the Forest Vegetation Simulator, a widely used statistical individual tree growth and yield model. Results: Diameter and height growth rates were predicted with error rates consistent with those produced using statistical models. Mortality and ingrowth error rates were higher than those observed for diameter and height, but also were within the bounds produced by traditional approaches for predicting these rates. Ingrowth species composition was very poorly predicted. The model was capable of reproducing a wide range of stand dynamic trajectories and in some cases reproduced trajectories that the statistical model was incapable of reproducing. Conclusions: The model has potential to be used as a benchmarking tool for evaluating statistical and process models and may provide a mechanism to separate signal from noise and improve our ability to analyze and learn from large regional datasets that often have underlying flaws in sample design.展开更多
Background: Growth and yield models are important tools for forest planning. Due to its geographic location, topology, and history of management, the forests of the Adirondacks Region of New York are unique and compl...Background: Growth and yield models are important tools for forest planning. Due to its geographic location, topology, and history of management, the forests of the Adirondacks Region of New York are unique and complex. However, only a relatively limited number of growth and yield models have been developed and/or can be reasonably extended to this region currently. Methods: in this analysis, 571 long-term continuous forest inventory plots with a total of 10 - 52 years of measurement data from four experimental forests maintained by the State University of New York College of Environmental Science and Forestry and one nonindustrial private forest were used to develop an individual tree growth model for the primary hardwood and softwood species in the region. Species-specific annualized static and dynamic equations were developed using the available data and the system was evaluated for long-term behavior. Results: Equivalence tests indicated that the Northeast Variant of the Forest Vegetation Simulator (FVS-NE) was biased in its estimation of tree total and bole height, diameter and height increment, and mortality for most species examined. In contrast, the developed static and annualized dynamic, species-specific equations performed quite well given the underlying variability in the data. Long-term model projections were consistent with the data and suggest a relatively robust system for prediction. Conclusions: Overall, the developed growth model showed reasonable behavior and is a significant improvement over existing models for the region. The model also highlighted the complexities of forest dynamics in the region and should help improve forest planning efforts there.展开更多
Urbanization changes have been widely examined and numerous urban growth models have been proposed. We introduce an alternative urban growth model specifically designed to incorporate spatial heterogeneity in urban gr...Urbanization changes have been widely examined and numerous urban growth models have been proposed. We introduce an alternative urban growth model specifically designed to incorporate spatial heterogeneity in urban growth models. Instead of applying a single method to the entire study area, we segment the study area into different regions and apply targeted algorithms in each subregion. The working hypothesis is that the integration of appropriately selected region-specific models will outperform a globally applied model as it will incorporate further spatial heterogeneity. We examine urban land use changes in Denver, Colorado. Two land use maps from different time snapshots (1977 and 1997) are used to detect the urban land use changes, and 23 explanatory factors are produced to model urbanization. The proposed Spatially Heterogeneous Expert Based (SHEB) model tested decision trees as the underlying modeling algorithm, applying them in different subregions. In this paper the segmentation tested is the division of the entire area into interior and exterior urban areas. Interior urban areas are those situated within dense urbanized structures, while exterior urban areas are outside of these structures. Obtained results on this model regionalization technique indicate that targeted local models produce improved results in terms of Kappa, accuracy percentage and multi-scale performance. The model superiority is also confirmed by model pairwise comparisons using t-tests. The segmentation criterion of interior/exterior selection may not only capture specific characteristics on spatial and morphological properties, but also socioeconomic factors which may implicitly be present in these spatial representations. The usage of interior and exterior subregions in the present study acts as a proof of concept. Other spatial heterogeneity indicators, for example landscape, socioeconomic and political boundaries could act as the basis for improved local segmentations.展开更多
The artificial pure and mixed Korean pine (Pinus koraiensis) forests were investigated at Dailing Forestry Bureau in Xiaoxing'an mountains from 1990 to 1992. Depending on the distance between the samplings of Kore...The artificial pure and mixed Korean pine (Pinus koraiensis) forests were investigated at Dailing Forestry Bureau in Xiaoxing'an mountains from 1990 to 1992. Depending on the distance between the samplings of Korean pine and their neighbor trees, the neighbor tree height, the size of neighbor tree canopy, and dimension of neighbor tree. The forest structure was classified into three types: (1) prowth of a tree in the light (open), (2) Growth of a tree in the canopy gap (Gap), (3)Growth of a tree under broad-leaved tree canopy. The frequeney, height, and age of stem divergence of Korean pine tree were investigated by sampling trees. The temporal and spatial model of the tree growth was applied on basis of the height of stem divergence, ratio of height and DBH, and character of tree stem.The morphology and growth character of Korean pine trees during different development stage were forecasted.展开更多
Accurate and efficient estimation of forest growth and live biomass is a critical element in assessing potential responses to forest management and environmental change. The objective of this study was to develop mode...Accurate and efficient estimation of forest growth and live biomass is a critical element in assessing potential responses to forest management and environmental change. The objective of this study was to develop models to predict longleaf pine tree diameter at breast height (dbh) and merchantable stem volume (V) using data obtained from field measurements. We used longleaf pine tree data from 3,376 planted trees on 127 permanent plots located in the U.S. Gulf Coastal Plain region to fit equations to predict dbh and V as functions of tree height (H) and crown area (CA). Prediction of dbh as a function of H improved when CA was added as an additional independent variable. Similarly, predic- tions of V based on H improved when CA was included. Incorporation of additional stand variables such as age, site index, dominant height, and stand density were also evaluated but resulted in only small improvements in model performance. For model testing we used data from planted and naturally-regenerated trees located inside and outside the geographic area used for model fitting. Our results suggest that the models are a robust alternative for dbh and V estimations when H and CA are known on planted stands with potential for naturally-regenerated stands, across a wide range of ages. We discuss the importance of these models for use with metrics derived from remote sensing data.展开更多
Currently available proxies were studied as networks for building reconstruction models of the Atlantic Multidecadal Oscillation (AMO). Only proxies that would double the current record length (backwards in time from ...Currently available proxies were studied as networks for building reconstruction models of the Atlantic Multidecadal Oscillation (AMO). Only proxies that would double the current record length (backwards in time from AD 1564) were included. We present two proxy networks and corresponding reconstruction (transfer) models, one for tree-growth based proxies only and another for multiproxies. Both of them show a useful match in timing as well as amplitude with the AMO. These model structures demonstrated reasonable model performance (overall r<sup>2</sup> = 0.45 - 0.36). The time stability of proxy-AMO relationships was also validated. The new models produced acceptable results in cross-calibration-verification (reduction of error and coefficient of efficiency statistics in 1856-1921 and 1922-1990 vary between 0.41 and 0.21). The spatial distribution of these data series indicate that proxies respond to an AMO-like climatic oscillation over much of the Northern Hemisphere.展开更多
Background: In economically optimal management, trees that are removed in a thinning treatment should be selected on the basis of their value, relative value increment and the effect of removal on the growth of remai...Background: In economically optimal management, trees that are removed in a thinning treatment should be selected on the basis of their value, relative value increment and the effect of removal on the growth of remaining trees. Large valuable trees with decreased value increment should be removed, especially when they overtop smaller trees. Methods: This study optimized the tree selection rule in the thinning treatments of continuous cover managemen when the aim is to maximize the profitability of forest management. The weights of three criteria (stem value, relative value increment and effect of removal on the competition of remaining trees) were optimized together with thinning intervals. Results and conclusions: The results confirmed the hypothesis that optimal thinning involves removing predominantly large trees. Increasing stumpage value, decreasing relative value increment, and increasing competitive influence increased the likelihood that removal is optimal decision. However, if the spatial distribution of trees is irregular, it is optimal to leave large trees in sparse places and remove somewhat smaller trees from dense places. However, the benefit of optimal thinning, as compared to diameter limit cutting is not usually large in pure one-species stands. On the contrary, removing the smallest trees from the stand may lead to significant (30-40 %) reductions in the net present value of harvest incomes.展开更多
基金supported by the National Natural Science Foundation of China(41561088 and 61501314)the Science&Technology Nova Program of Xinjiang Production and Construction Corps,China(2018CB020)
文摘Mathematical models have been widely employed for the simulation of growth dynamics of annual crops,thereby performing yield prediction,but not for fruit tree species such as jujube tree(Zizyphus jujuba).The objectives of this study were to investigate the potential use of a modified WOFOST model for predicting jujube yield by introducing tree age as a key parameter.The model was established using data collected from dedicated field experiments performed in 2016-2018.Simulated growth dynamics of dry weights of leaves,stems,fruits,total biomass and leaf area index(LAI) agreed well with measured values,showing root mean square error(RMSE) values of 0.143,0.333,0.366,0.624 t ha^-1 and 0.19,and R2 values of 0.947,0.976,0.985,0.986 and 0.95,respectively.Simulated phenological development stages for emergence,anthesis and maturity were 2,3 and 3 days earlier than the observed values,respectively.In addition,in order to predict the yields of trees with different ages,the weight of new organs(initial buds and roots) in each growing season was introduced as the initial total dry weight(TDWI),which was calculated as averaged,fitted and optimized values of trees with the same age.The results showed the evolution of the simulated LAI and yields profiled in response to the changes in TDWI.The modelling performance was significantly improved when it considered TDWI integrated with tree age,showing good global(R2≥0.856,RMSE≤0.68 t ha^-1) and local accuracies(mean R2≥0.43,RMSE≤0.70 t ha^-1).Furthermore,the optimized TDWI exhibited the highest precision,with globally validated R2 of 0.891 and RMSE of 0.591 t ha^-1,and local mean R2 of 0.57 and RMSE of 0.66 t ha^-1,respectively.The proposed model was not only verified with the confidence to accurately predict yields of jujube,but it can also provide a fundamental strategy for simulating the growth of other fruit trees.
文摘Background: A novel approach to modelling individual tree growth dynamics is proposed. The approach combines multiple imputation and copula sampling to produce a stochastic individual tree growth and yield projection system. Methods: The Nova Scotia, Canada permanent sample plot network is used as a case study to develop and test the modelling approach. Predictions from this model are compared to predictions from the Acadian variant of the Forest Vegetation Simulator, a widely used statistical individual tree growth and yield model. Results: Diameter and height growth rates were predicted with error rates consistent with those produced using statistical models. Mortality and ingrowth error rates were higher than those observed for diameter and height, but also were within the bounds produced by traditional approaches for predicting these rates. Ingrowth species composition was very poorly predicted. The model was capable of reproducing a wide range of stand dynamic trajectories and in some cases reproduced trajectories that the statistical model was incapable of reproducing. Conclusions: The model has potential to be used as a benchmarking tool for evaluating statistical and process models and may provide a mechanism to separate signal from noise and improve our ability to analyze and learn from large regional datasets that often have underlying flaws in sample design.
文摘Background: Growth and yield models are important tools for forest planning. Due to its geographic location, topology, and history of management, the forests of the Adirondacks Region of New York are unique and complex. However, only a relatively limited number of growth and yield models have been developed and/or can be reasonably extended to this region currently. Methods: in this analysis, 571 long-term continuous forest inventory plots with a total of 10 - 52 years of measurement data from four experimental forests maintained by the State University of New York College of Environmental Science and Forestry and one nonindustrial private forest were used to develop an individual tree growth model for the primary hardwood and softwood species in the region. Species-specific annualized static and dynamic equations were developed using the available data and the system was evaluated for long-term behavior. Results: Equivalence tests indicated that the Northeast Variant of the Forest Vegetation Simulator (FVS-NE) was biased in its estimation of tree total and bole height, diameter and height increment, and mortality for most species examined. In contrast, the developed static and annualized dynamic, species-specific equations performed quite well given the underlying variability in the data. Long-term model projections were consistent with the data and suggest a relatively robust system for prediction. Conclusions: Overall, the developed growth model showed reasonable behavior and is a significant improvement over existing models for the region. The model also highlighted the complexities of forest dynamics in the region and should help improve forest planning efforts there.
文摘Urbanization changes have been widely examined and numerous urban growth models have been proposed. We introduce an alternative urban growth model specifically designed to incorporate spatial heterogeneity in urban growth models. Instead of applying a single method to the entire study area, we segment the study area into different regions and apply targeted algorithms in each subregion. The working hypothesis is that the integration of appropriately selected region-specific models will outperform a globally applied model as it will incorporate further spatial heterogeneity. We examine urban land use changes in Denver, Colorado. Two land use maps from different time snapshots (1977 and 1997) are used to detect the urban land use changes, and 23 explanatory factors are produced to model urbanization. The proposed Spatially Heterogeneous Expert Based (SHEB) model tested decision trees as the underlying modeling algorithm, applying them in different subregions. In this paper the segmentation tested is the division of the entire area into interior and exterior urban areas. Interior urban areas are those situated within dense urbanized structures, while exterior urban areas are outside of these structures. Obtained results on this model regionalization technique indicate that targeted local models produce improved results in terms of Kappa, accuracy percentage and multi-scale performance. The model superiority is also confirmed by model pairwise comparisons using t-tests. The segmentation criterion of interior/exterior selection may not only capture specific characteristics on spatial and morphological properties, but also socioeconomic factors which may implicitly be present in these spatial representations. The usage of interior and exterior subregions in the present study acts as a proof of concept. Other spatial heterogeneity indicators, for example landscape, socioeconomic and political boundaries could act as the basis for improved local segmentations.
文摘The artificial pure and mixed Korean pine (Pinus koraiensis) forests were investigated at Dailing Forestry Bureau in Xiaoxing'an mountains from 1990 to 1992. Depending on the distance between the samplings of Korean pine and their neighbor trees, the neighbor tree height, the size of neighbor tree canopy, and dimension of neighbor tree. The forest structure was classified into three types: (1) prowth of a tree in the light (open), (2) Growth of a tree in the canopy gap (Gap), (3)Growth of a tree under broad-leaved tree canopy. The frequeney, height, and age of stem divergence of Korean pine tree were investigated by sampling trees. The temporal and spatial model of the tree growth was applied on basis of the height of stem divergence, ratio of height and DBH, and character of tree stem.The morphology and growth character of Korean pine trees during different development stage were forecasted.
基金supported by the U.S.Department of Defense,through the Strategic Environmental Research and Development Program(SERDP)
文摘Accurate and efficient estimation of forest growth and live biomass is a critical element in assessing potential responses to forest management and environmental change. The objective of this study was to develop models to predict longleaf pine tree diameter at breast height (dbh) and merchantable stem volume (V) using data obtained from field measurements. We used longleaf pine tree data from 3,376 planted trees on 127 permanent plots located in the U.S. Gulf Coastal Plain region to fit equations to predict dbh and V as functions of tree height (H) and crown area (CA). Prediction of dbh as a function of H improved when CA was added as an additional independent variable. Similarly, predic- tions of V based on H improved when CA was included. Incorporation of additional stand variables such as age, site index, dominant height, and stand density were also evaluated but resulted in only small improvements in model performance. For model testing we used data from planted and naturally-regenerated trees located inside and outside the geographic area used for model fitting. Our results suggest that the models are a robust alternative for dbh and V estimations when H and CA are known on planted stands with potential for naturally-regenerated stands, across a wide range of ages. We discuss the importance of these models for use with metrics derived from remote sensing data.
文摘Currently available proxies were studied as networks for building reconstruction models of the Atlantic Multidecadal Oscillation (AMO). Only proxies that would double the current record length (backwards in time from AD 1564) were included. We present two proxy networks and corresponding reconstruction (transfer) models, one for tree-growth based proxies only and another for multiproxies. Both of them show a useful match in timing as well as amplitude with the AMO. These model structures demonstrated reasonable model performance (overall r<sup>2</sup> = 0.45 - 0.36). The time stability of proxy-AMO relationships was also validated. The new models produced acceptable results in cross-calibration-verification (reduction of error and coefficient of efficiency statistics in 1856-1921 and 1922-1990 vary between 0.41 and 0.21). The spatial distribution of these data series indicate that proxies respond to an AMO-like climatic oscillation over much of the Northern Hemisphere.
文摘Background: In economically optimal management, trees that are removed in a thinning treatment should be selected on the basis of their value, relative value increment and the effect of removal on the growth of remaining trees. Large valuable trees with decreased value increment should be removed, especially when they overtop smaller trees. Methods: This study optimized the tree selection rule in the thinning treatments of continuous cover managemen when the aim is to maximize the profitability of forest management. The weights of three criteria (stem value, relative value increment and effect of removal on the competition of remaining trees) were optimized together with thinning intervals. Results and conclusions: The results confirmed the hypothesis that optimal thinning involves removing predominantly large trees. Increasing stumpage value, decreasing relative value increment, and increasing competitive influence increased the likelihood that removal is optimal decision. However, if the spatial distribution of trees is irregular, it is optimal to leave large trees in sparse places and remove somewhat smaller trees from dense places. However, the benefit of optimal thinning, as compared to diameter limit cutting is not usually large in pure one-species stands. On the contrary, removing the smallest trees from the stand may lead to significant (30-40 %) reductions in the net present value of harvest incomes.