期刊文献+
共找到3,598篇文章
< 1 2 180 >
每页显示 20 50 100
Microenvironmental effects on growth response of Pinus massoniana to climate at its northern boundary in the Tongbai Mountains,Central China
1
作者 Jianfeng Peng Jiayue Cui +7 位作者 Jinbao Li Meng Peng Yongtao Ma Xiaoxu Wei Jinkuan Li Xuan Li Yamen Liu Jiaxin Li 《Journal of Forestry Research》 SCIE EI CAS CSCD 2024年第1期44-57,共14页
The Tongbai Mountains is an ecologically sensi-tive region and the northern boundary of Pinus massoniana Lamb.To analyze the effect of different microenvironments on tree growth response to climate factors,we develope... The Tongbai Mountains is an ecologically sensi-tive region and the northern boundary of Pinus massoniana Lamb.To analyze the effect of different microenvironments on tree growth response to climate factors,we developed standard chronologies for earlywood width(EWW),late-wood width(LWW),and total ring width(TRW)of P.massoniana at two sampling sites on slopes with different orientations,then analyzed characteristics of the chronolo-gies and their correlations with climate variables from five stations in the region and with a regional normalized differ-ence vegetation index(NDVI).Statistical results showed that the TRW/EWW/LWW chronology consistency and charac-teristics(mean sensitivity,signal to noise ratio,expressed population signal)for trees growing on the southeastern slope were much higher than for trees on the northeastern slope.Correlations indicated that temperature in current March and August has a significant positive effect on TRW/EWW/LWW formation,and the effect on the northeastern slope was weaker than on the southeastern slope.Compared to temperature,precipitation has more complicated effects on tree growth,but the effect on the northeastern slope was also generally weaker than on the southeastern slope.Step-wise linear regression analyses showed that temperature in August was the main limiting factor at the two sampling sites.Similarly,the response of tree growth on the southeast-ern slope as determined by the NDVI is better than on the northeastern slope,and the TRW/EWW/LWW chronologies for the southeastern slope explained over 50%of the total NDVI variances in June.Overall,the results indicate that the difference in the climate response of P.massoniana at two sampling sites is clearly caused by differences in the microenvironment,and such differences should be properly considered in future studies of forest dynamics and climate reconstructions. 展开更多
关键词 TREE-RINGS Pinus massoniana lamb MICROENVIRONMENT Radial growth climate-growth response
下载PDF
Stability assessment of tree ring growth of Pinus armandii Franch in response to climate change based on slope directions at the Lubanling in the Funiu Mountains,China
2
作者 Jinkuan Li Jianfeng Peng +4 位作者 Xiaoxu Wei Meng Peng Xuan Li Yameng Liu Jiaxin Li 《Journal of Forestry Research》 SCIE EI CAS CSCD 2024年第3期87-98,共12页
Global warming will affect growth strategies and how trees will adapt.To compare the response of tree radial growth to climate warming in different slope directions,samples of Pinus armandii Franch were collected and ... Global warming will affect growth strategies and how trees will adapt.To compare the response of tree radial growth to climate warming in different slope directions,samples of Pinus armandii Franch were collected and tree-ring chronologies developed on northern and western slopes from the Lubanling in the Funiu Mountains.Correlation analyses showed that two chronologies were mainly limited by temperatures in the previous June-August and the com-bination of temperatures and moisture in the current May-July.The difference of the climate response to slopes was small but not negligible.Radial growth of the LBLO1 site on the northern slope was affected by the combined maximum and minimum temperatures,while that of the LBLO2 site was affected by maximum temperatures.With regards to moisture,radial growth of the trees on the north slope was influenced by the relative humidity in the current May-July,while on the western slope,it was affected by the relative humidity in the previous June-August,the current May-July and the precipitation in the current May-July.With the change in climate,the effects of the main limiting factors on growth on different slopes were visible to a certain extent,but the differences in response of trees on different slopes gradually decreased,which might be caused by factors such as different slope directions and the change in diurnal temperature range.These results may provide information for forest protection and ecological construction in this region,and a scientific reference for future climate reconstruction. 展开更多
关键词 Tree ring width Lubanling Pinus armandi Franch Slope direction climate response
下载PDF
Stability assessment of tree ring growth of Pinus armandii Franch in response to climate change based on slope directions at the Lubanling in the Funiu Mountains,China
3
作者 Jinkuan Li Jianfeng Peng +4 位作者 Xiaoxu Wei Meng Peng Xuan Li Yameng Liu Jiaxin Li 《Journal of Forestry Research》 SCIE EI CAS CSCD 2024年第2期197-208,共12页
Global warming will affect growth strategies and how trees will adapt.To compare the response of tree radial growth to climate warming in different slope directions,samples of Pinus armandii Franch were collected and ... Global warming will affect growth strategies and how trees will adapt.To compare the response of tree radial growth to climate warming in different slope directions,samples of Pinus armandii Franch were collected and treering chronologies developed on northern and western slopes from the Lubanling in the Funiu Mountains.Correlation analyses showed that two chronologies were mainly limited by temperatures in the previous June–August and the combination of temperatures and moisture in the current May–July.The difference of the climate response to slopes was small but not negligible.Radial growth of the LBL01 site on the northern slope was affected by the combined maximum and minimum temperatures,while that of the LBL02 site was affected by maximum temperatures.With regards to moisture,radial growth of the trees on the north slope was influenced by the relative humidity in the current May–July,while on the western slope,it was affected by the relative humidity in the previous June–August,the current May–July and the precipitation in the current May–July.With the change in climate,the effects of the main limiting factors on growth on different slopes were visible to a certain extent,but the differences in response of trees on different slopes gradually decreased,which might be caused by factors such as different slope directions and the change in diurnal temperature range.These results may provide information for forest protection and ecological construction in this region,and a scientific reference for future climate reconstruction. 展开更多
关键词 Tree ring width Lubanling Pinus armandii Franch Slope direction climate response
下载PDF
Coral records of Mid-Holocene sea-level highstands and climate responses in the northern South China Sea
4
作者 Yuanfu Yue Lichao Tang +1 位作者 Kefu Yu Rongyong Huang 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2024年第2期43-57,共15页
High-resolution sea-level data and high-precision dating of corals in the northern South China Sea(SCS)during the Holocene provide a reference and historical background for current and future sea-level changes and a b... High-resolution sea-level data and high-precision dating of corals in the northern South China Sea(SCS)during the Holocene provide a reference and historical background for current and future sea-level changes and a basis for scientific assessment of the evolutionary trend of coral reefs in the SCS.Although sporadic studies have been performed around Hainan Island in the northern SCS,the reconstructed sea level presents different values or is controversial because the indicative meaning of the sea-level indicators were neither quantified nor uniform criteria.Here,we determined the quantitative relationship between modern living coral and sea level by measuring the top surfaces of 27 live Porites corals from the inner reef flat along the east coast of Hainan Island and assessed the accuracy of results obtained using coral as sea-level indicators.Additionally,three in situ fossil Porites corals were analyzed based on elevation measurements,digital X-ray radiography,and U-Th dating.The survey results showed that the indicative meanings for the modern live Porites corals is(146.09±8.35)cm below the mean tide level(MTL).It suggested that their upward growth limit is constrained by the sea level,and the lowest low water is the highest level of survival for the modern live Porites corals.Based on the newly defined indicative meanings,6 new sea-level index points(SLIPs)were obtained and 19 published SLIPs were recalculated.Those SLIPs indicated a relative sea level fluctuation between(227.7±9.8)cm to(154.88±9.8)cm MTL between(5393±25)cal a BP and(3390±12)cal a BP,providing evidences of the Mid-Holocene sea-level highstand in the northern SCS.Besides that,our analysis demonstrated that different sea-level histories may be produced based on different indicative meanings or criteria.The dataset of 276 coral U-Th ages indicates that coral reef development in the northern SCS comprised the initial development,boom growth,decline,and flourishing development again.A comparison with regional records indicated that synergistic effects of climatic and environmental factors were involved in the development of coral reefs in the northern SCS.Thus,the cessation of coral reef development during the Holocene in the northern SCS was probably associated with the dry and cold climate in South China,as reflected in the synchronous weakening of the ENSO and East Asian summer monsoon induced by the reduction of the 65°N summer insolation,which forced the migration of the Intertropical Convergence Zone. 展开更多
关键词 northern South China Sea Middle Holocene sea-level highstand Porites corals climate response
下载PDF
Hydrologic Response to Future Climate Change in the Dulong-Irra-waddy River Basin Based on Coupled Model Intercomparison Project 6
5
作者 XU Ziyue MA Kai +1 位作者 YUAN Xu HE Daming 《Chinese Geographical Science》 SCIE CSCD 2024年第2期294-310,共17页
Within the context of the Belt and Road Initiative(BRI)and the China-Myanmar Economic Corridor(CMEC),the Dulong-Ir-rawaddy(Ayeyarwady)River,an international river among China,India and Myanmar,plays a significant role... Within the context of the Belt and Road Initiative(BRI)and the China-Myanmar Economic Corridor(CMEC),the Dulong-Ir-rawaddy(Ayeyarwady)River,an international river among China,India and Myanmar,plays a significant role as both a valuable hydro-power resource and an essential ecological passageway.However,the water resources and security exhibit a high degree of vulnerabil-ity to climate change impacts.This research evaluates climate impacts on the hydrology of the Dulong-Irrawaddy River Basin(DIRB)by using a physical-based hydrologic model.We crafted future climate scenarios using the three latest global climate models(GCMs)from Coupled Model Intercomparison Project 6(CMIP6)under two shared socioeconomic pathways(SSP2-4.5 and SSP5-8.5)for the near(2025-2049),mid(2050-2074),and far future(2075-2099).The regional model using MIKE SHE based on historical hydrologic processes was developed to further project future streamflow,demonstrating reliable performance in streamflow simulations with a val-idation Nash-Sutcliffe Efficiency(NSE)of 0.72.Results showed that climate change projections showed increases in the annual precip-itation and potential evapotranspiration(PET),with precipitation increasing by 11.3%and 26.1%,and PET increasing by 3.2%and 4.9%,respectively,by the end of the century under SSP2-4.5 and SSP5-8.5.These changes are projected to result in increased annual streamflow at all stations,notably at the basin’s outlet(Pyay station)compared to the baseline period(with an increase of 16.1%and 37.0%at the end of the 21st century under SSP2-4.5 and SSP5-8.5,respectively).Seasonal analysis for Pyay station forecasts an in-crease in dry-season streamflow by 31.3%-48.9%and 22.5%-76.3%under SSP2-4.5 and SSP5-8.5,respectively,and an increase in wet-season streamflow by 5.8%-12.6%and 2.8%-33.3%,respectively.Moreover,the magnitude and frequency of flood events are pre-dicted to escalate,potentially impacting hydropower production and food security significantly.This research outlines the hydrological response to future climate change during the 21st century and offers a scientific basis for the water resource management strategies by decision-makers. 展开更多
关键词 climate change hydrologic response Coupled Model Intercomparison Project 6(CMIP6) MIKE SHE(Système Hydrologique Europeén) Dulong-Irrawaddy River Basin
下载PDF
Spatial and temporal patterns of the sensitivity of radial growth response by Picea schrenkiana to regional climate change in the Tianshan Mountains 被引量:8
6
作者 Zhongtong Peng Yuandong Zhang +6 位作者 Liangjun Zhu Mingming Guo Qingao Lu Kun Xu Hui Shao Qifeng Mo Shirong Liu 《Journal of Forestry Research》 SCIE CAS CSCD 2023年第6期1669-1681,共13页
Climate change significantly impacts forest ecosystems in arid and semi-arid regions.However,spatiotemporal patterns of climate-sensitive changes in individual tree growth under increased climate warming and precipita... Climate change significantly impacts forest ecosystems in arid and semi-arid regions.However,spatiotemporal patterns of climate-sensitive changes in individual tree growth under increased climate warming and precipitation in north-west China is unclear.The dendrochronological method was used to study climate response sensitivity of radial growth of Picea schrenkiana from 158 trees at six sites during 1990-2020.The results show that climate warming and increased precipitation significantly promoted the growth of trees.The response to temperature first increased,then decreased.However,the response to increased precipitation and the self-calibrating Palmer Drought Severity Index(scPDSI)increased significantly.In most areas of the Tianshan Mountains,the proportion of trees under increased precipitation and scPDSI positive response was relatively high.Over time,small-diameter trees were strongly affected by drought stress.It is predicted that under continuous warming and increased precipitation,trees in most areas of the Tianshan Mountains,especially those with small diameters,will be more affected by precipitation. 展开更多
关键词 Regional climate change Picea schrenkiana climate response sensitivity Spatiotemporal patterns Tianshan mountains
下载PDF
Climate-growth relationships of Pinus tabuliformis along an altitudinal gradient on Baiyunshan Mountain,Central China 被引量:1
7
作者 Xiaoxu Wei Jianfeng Peng +5 位作者 Jinbao Li Jinkuan Li Meng Peng Xuan Li Yameng Liu Jiaxin Li 《Journal of Forestry Research》 SCIE EI CAS CSCD 2024年第1期202-212,共11页
A set of standard chronologies for tree-ring width(TRW),earlywood width(EWW)and latewood width(LWW)in Pinus tabuliformis Carr.along an altitudi-nal gradient(1450,1400,and 1350 m a.s.l.)on Baiyunshan Mountain,Central C... A set of standard chronologies for tree-ring width(TRW),earlywood width(EWW)and latewood width(LWW)in Pinus tabuliformis Carr.along an altitudi-nal gradient(1450,1400,and 1350 m a.s.l.)on Baiyunshan Mountain,Central China to analyze the effect of varying temperature and precipitation on growth along the gradi-ent.Correlation analyses showed that at all three altitudes and the TRW and EWW chronologies generally had signifi-cant negative correlations with mean and maximum tem-peratures in the current April and May and with minimum temperatures in the prior July and August,but significant positive correlations with precipitation in the current May.Correlations were generally significantly negative between LWW chronologies and all temperatures in the prior July and August,indicating that the prior summer temperature had a strong lag effect on the growth of P.tabuliformis that increased with altitude.The correlation with the standard-ized precipitation evapotranspiration index(SPEI)confirmed that wet conditions in the current May promoted growth of TR and EW at all altitudes.Significant altitudinal differences were also found;at 1400 m,there were significant positive correlations between EWW chronologies and SPEI in the current April and significant negative correlations between LWW chronologies and SPEI in the current September,but these correlations were not significant at 1450 m.At 1350 m,there were also significant negative correlations between the TRW and the EWW chronologies and SPEI in the prior October and the current July and between LWW chronology and SPEI in the current August,but these cor-relations were not significant at 1400 m.Moving correlation results showed a stable response of EWW in relation to the SPEI in the current May at all three altitudes and of LWW to maximum temperature in the prior July-August at 1400 m from 2002 to 2018.The EWW chronology at 1400 m and the LWW chronology at 1450 m were identified as more suitable for climate reconstruction.These results provide a strong scientific basis for forest management decisions and climate reconstructions in Central China. 展开更多
关键词 Tree rings climate response Altitudinal gradient Baiyunshan Mountain Pinus tabuliformis Carr
下载PDF
Differences and similarities in radial growth of Betula species to climate change
8
作者 Di Liu Yang An +3 位作者 Zhao Li Zhihui Wang Yinghui Zhao Xiaochun Wang 《Journal of Forestry Research》 SCIE EI CAS CSCD 2024年第2期176-187,共12页
Betula platyphylla and Betula costata are important species in mixed broadleaved-Korean pine(Pinus koraiensis)forests.However,the specific ways in which their growth is affected by warm temperatures and drought remain... Betula platyphylla and Betula costata are important species in mixed broadleaved-Korean pine(Pinus koraiensis)forests.However,the specific ways in which their growth is affected by warm temperatures and drought remain unclear.To address this issue,60 and 62 tree-ring cores of B.platyphylla and B.costata were collected in Yichun,China.Using dendrochronological methods,the response and adaptation of these species to climate change were examined.A“hysteresis effect”was found in the rings of both species,linked to May–September moisture conditions of the previous year.Radial growth of B.costata was positively correlated with the standardized precipitation-evapotranspiration index(SPEI),the precipitation from September to October of the previous year,and the relative humidity in October of the previous year.Growth of B.costata is primarily restricted by moisture conditions from September to October.In contrast,B.platyphylla growth is mainly limited by minimum temperatures in May–June of both the previous and current years.After droughts,B.platyphylla had a faster recovery rate compared to B.costata.In the context of rising temperatures since 1980,the correlation between B.platyphylla growth and monthly SPEI became positive and strengthened over time,while the growth of B.costata showed no conspicuous change.Our findings suggest that the growth of B.platyphylla is already affected by warming temperatures,whereas B.costata may become limited if warming continues or intensifies.Climate change could disrupt the succession of these species,possibly accelerating the succession of pioneer species.The results of this research are of great significance for understanding how the growth changes of birch species under warming and drying conditions,and contribute to understanding the structural adaptation of mixed broadleaved-Korean pine(Pinus koraiensis)forests under climate change. 展开更多
关键词 Tree rings Betula platyphylla Betula costata climate response Moving correlation Extreme drought
下载PDF
Divergent responses of Picea crassifolia Kom.in different forest patches to climate change in the northeastern Tibetan Plateau
9
作者 Zhongtong Peng Qifeng Mo +5 位作者 Liangjun Zhu Qingao Lu Jiaqing Cai Mingming Guo Kun Xu Yuandong Zhang 《Forest Ecosystems》 SCIE CSCD 2023年第6期752-762,共11页
Global climate changes have significantly affected tree growth and forest structures and functions in some arid and semi-arid regions,which are becoming warmer and wetter.Due to natural factors such as climate and ter... Global climate changes have significantly affected tree growth and forest structures and functions in some arid and semi-arid regions,which are becoming warmer and wetter.Due to natural factors such as climate and terrain,some tree species may form different forest patches at the edges of their distribution areas.However,how forest patches of various sizes respond to climate change is unclear.In this study,we collected 203 tree cores from six different sizes of forest patches at the edge of the distribution area of Picea crassifolia Kom.in the northeast Tibetan Plateau.And we used the dendrochronology method to study the response of tree growth and resilience in different forest patches to climate change from 1961 to 2020.We simultaneously measured the contents of nonstructural carbohydrates(NSC),total nitrogen and total phosphorus of tree needles.Our results showed that the growth of trees in small-and medium-size forest patches(0.8–18.6 ha)has increased significantly.The early growing season(May–July)minimum temperature was the most important climate factor driving the growth of small-and medium-sized patch trees.The early growing season maximum temperature was the most important climate factor that inhibited the growth of trees in the largest patches(362.8 ha).The growth of individual trees in medium forest patches was better and the correlation with annual minimum temperature,maximum temperature,precipitation,actual evapotranspiration,and palmer drought severity index was stronger.The higher NSC content,stronger photosynthesis,and higher nitrogen utilization efficiency in leaves might be one of the reasons for the better growth of trees in moderate forest patches.In extreme drought years,as the forest patch area increased,the overall trend of tree growth resistance showed a unimodal pattern,with the highest at a forest patch area of 7.1 ha,while the overall trend of tree growth recovery was opposite.Therefore,we should strengthen the management of trees in large forest patches to cope with climate change. 展开更多
关键词 climate change Picea crassifolia Kom Forest patches Tree growth RESILIENCE
下载PDF
Dynamic response to climate change in the radial growth of Picea schrenkiana in western Tien Shan,China 被引量:7
10
作者 Liang Jiao Shengjie Wang +1 位作者 Ke Chen Xiaoping Liu 《Journal of Forestry Research》 SCIE CAS CSCD 2022年第1期147-157,共11页
Forests are important ecosystems for economic and social development.However,the response of tree radial growth to climate has produced‘divergent problems'at high latitudes under global warming.In this study,the ... Forests are important ecosystems for economic and social development.However,the response of tree radial growth to climate has produced‘divergent problems'at high latitudes under global warming.In this study,the response stability and trend of Picea schrenkiana radial growth to variability in climate factors were analyzed in the mid-latitudes of the western Tien Shan Mountains.Radial growth of P.schrenkiana was mainly limited by minimum and mean temperatures.The divergent responses of radial growth occurred in response to the minimum and mean temperatures at the beginning of the growing season(April–May)of the current year,but responses to drought occurred in July–September of the previous year.And the mean and minimum temperatures in June–September of the current year were both stable.Radial growth first increased and then decreased according to the basal area increment,with a gradual increase in temperature.Therefore,forest ecosystems in mountainous arid areas will be increasingly affected by future climate warming. 展开更多
关键词 DENDROECOLOGY Divergent response climate change Forest degradation Western Tien Shan mountains
下载PDF
Growth response of Abies spectabilis to climate along an elevation gradient of the Manang valley in the central Himalayas 被引量:3
11
作者 Samresh Rai Binod Dawadi +3 位作者 Yafeng Wang Xiaoming Lu Huang Ru Shalik Ram Sigdel 《Journal of Forestry Research》 SCIE CAS CSCD 2020年第6期2245-2254,共10页
The Himalayas are characterized by a broad gradient of bioclimatic zones along their elevation.However,less is known how forest growth responds to climatic change along elevation.In this study,four standard treering w... The Himalayas are characterized by a broad gradient of bioclimatic zones along their elevation.However,less is known how forest growth responds to climatic change along elevation.In this study,four standard treering width chronologies of Himalayan fir(Abies spectabilis)were developed,spanning 142–649 years along an elevation gradient of 3076–3900 m a.s.l.Principal component analysis classified the four chronologies into two groups;the ones at lower elevations(M1 and M2)and higher elevations(M3 and M4)show two distinct growth trends.Radial growth is limited by summer(June–August)precipitation at M3,and by precipitation during spring(March–May)and summer at M4.It is limited by spring temperatures and winter precipitation(December–February)at M1.Tree-ring width chronologies also significantly correlate with winter and spring Palmer Drought Severity Index(PDSI)at M1,and with summer PDSI at M3 and M4.Thus,Himalayan fir growth at high elevations is mainly limited by moisture stress rather than by low temperatures.Furthermore,the occurrence of missing rings coincides with dry periods,providing additional evidence for moisture limitation of Himalayan fir growth. 展开更多
关键词 climate signals Tree-ring width Abies spectabilis Radial growth Precipitation Manang valley HIMALAYAS
下载PDF
Response of tree-ring growth to climate at treeline ecotones in the Qilian Mountains,northwestern China 被引量:2
12
作者 ZhiBin He WenZhi Zhao +2 位作者 LiJie Zhang HU Liu ZhenXing Tang 《Research in Cold and Arid Regions》 2011年第2期103-109,共7页
Climate constitutes the main limiting factor for tree-ring growth in high-elevation forests, and the relationship between tree-ring growth and climate is complex. Based on tree-ring chronology and meteorological data,... Climate constitutes the main limiting factor for tree-ring growth in high-elevation forests, and the relationship between tree-ring growth and climate is complex. Based on tree-ring chronology and meteorological data, the influence of precipitation, mean temperature and mean minimum temperature at yearly, seasonal and monthly scales on the tree-ring growth of Picea crossifolia was studied at treeline ecotones in the Qilian Mountains, northwestern China. The results show that growing season temperatures of previous and current years are important limiting factors on tree-ring growth, particularly June mean temperature and mean minimum temperature of current year. The precipitations in the previous winter and current spring have a positive correlation, and in the current fall has a negative correlation with tree-ring growth, but these correlations are not significant. Our results suggest that temperature controls tree-ring growth more strongly than precipitation at treeline ecotones in the Qilian Mountains. 展开更多
关键词 Qilian Mountains treeline ecotones climate tree-ring growth
下载PDF
RADIAL GROWTH OF HUASHAN PINE AND ITS RESPONSE TO CLIMATE 被引量:6
13
作者 Shao Xuemei, Wu Xiangding(Institute of Geography, CAS, Beijing 100101 People’s Republic of China)Xi’an Laboratory of Loess and Quaternary Geology, CAS,xi’an 710061 People’s Republic of China) 《Journal of Geographical Sciences》 SCIE CSCD 1994年第Z2期88-102,共15页
Huashan pine (Finus armandii Franch) is a poential species for dendroclimatic study. Ring-width cores were sampled for four stands of two sites from the eastern extreme of the Qinling Mountains. The ring-width chronol... Huashan pine (Finus armandii Franch) is a poential species for dendroclimatic study. Ring-width cores were sampled for four stands of two sites from the eastern extreme of the Qinling Mountains. The ring-width chronologies developed in this study cover a maximum Period from A.D. 1359 t0 1992 and show high common chronology variance over the common period 1911-1960.All the chronologies are significantly correlated with all others, and the degree of correlation appears related to tree age. Response function analyses reveal that from 41 to 75 Percent of chronology variance can be accounted for by monthly mean air temperature and monthly total precipitation. A sufficiently strong correlation of ringwidth index with May and June rainfall and June temperature exists, implying soil moisture to be a limiting factor for Huashan pine growth. The association displayed by response diagrams between narrow rings, low precipitation, and high temperature during spring and early summer indicates a promising potential of ring widths for reconstruction of spring drought for the study area. 展开更多
关键词 tree-ring chronology DENDROclimatOLOGY Huashan pine climate-growth relationships
下载PDF
Climate forcing of tree growth in dry Afromontane forest fragments of Northern Ethiopia:evidence from multi-species responses 被引量:2
14
作者 Zenebe Girmay Siyum J.O.Ayoade +1 位作者 M.A.Onilude Motuma Tolera Feyissa 《Forest Ecosystems》 SCIE CSCD 2019年第2期132-148,共17页
Background: Climate-induced challenge remains a growing concern in the dry tropics, threatening carbon sink potential of tropical dry forests. Hence, understanding their responses to the changing climate is of high pr... Background: Climate-induced challenge remains a growing concern in the dry tropics, threatening carbon sink potential of tropical dry forests. Hence, understanding their responses to the changing climate is of high priority to facilitate sustainable management of the remnant dry forests. In this study, we examined the long-term climate-growth relations of main tree species in the remnant dry Afromontane forests in northern Ethiopia. The aim of this study was to assess the dendrochronological potential of selected dry Afromontane tree species and to study the influence of climatic variables (temperature and rainfall) on radial growth. It was hypothesized that there are potential tree species with discernible annual growth rings owing to the uni-modality of rainfall in the region. Ring width measurements were based on increment core samples and stem discs collected from a total of 106 trees belonging to three tree species (Juniperus procera, Olea europaea p. cuspidate and Podocarpus falcatus). Thesubsp. collected samples were prepared, crossdated, and analyzed using standard dendrochronological methods. The formation of annual growth rings of the study species was verified based on successful crossdatability and by correlating tree-ring widths with rainfall. Results: The results showed that all the sampled tree species form distinct growth boundaries though differences in the distinctiveness were observed among the species. Positive and significant correlations were found between the tree-ring widths and rainfall, implying that rainfall plays a vital role in determining tree growth in the region. The study confirmed the formation of annual growth rings through successful crossdating, thus highlighted the potential applicability of dendroclimatic studies in the region. Conclusions: Overall, the results proved the strong linkage between tree-ring chronologies and climate variability in the study region, which further strengthens the potential of dendrochronological studies developing in Ethiopia, and also has great implications for further paleo-climatic reconstructions and in the restoration of degraded lands. Further knowledge on the growth characteristics of tree species from the region is required to improve the network of tree-ring data and quality of the chronology so as to successfully reconstruct historic environmental changes. 展开更多
关键词 climate-growth relationship climate change DRY AFROMONTANE forest Restoration TREE-RING WIDTH
下载PDF
Response to climate changes in radial growth of Picea crassifolia in the Qilian mountains of northwestern China
15
作者 Jin-Mei XU Fu-Cheng BAO +3 位作者 Jian-Xiong LV Rong-Feng HUANG You-Ke ZHAO Evans ROBERT 《Forestry Studies in China》 CAS 2013年第4期310-319,共10页
In order to investigate the response to climate changes in radial growth of Picea crassifolia at the lower tree line in the middle Qilian mountains in northwestern China, relationships of standardized chronologies of ... In order to investigate the response to climate changes in radial growth of Picea crassifolia at the lower tree line in the middle Qilian mountains in northwestern China, relationships of standardized chronologies of annual ring, earlywood and latewood widths with mean monthly temperature and total monthly precipitation were analyzed by ways of correlation and pointer year analyses. The results show that annual ring, earlywood and latewood widths are significantly negatively correlated with mean monthly temperature in June and July. Annual ring and earlywood widths are significantly and positively correlated with total monthly precipitation in March, May and June and negatively correlated with total monthly precipitation in September. Latewood width is less sensitive to climate changes than the width of earlywood and insignificantly sensitive to precipitation. The results of pointer year analysis revealed that when summer temperatures are higher than the mean summer temperature synchronization and the summer precipitation lower than mean summer precipitation synchronization, narrow annual rings are formed. Wide annual rings are formed when summer temperatures are lower than the mean summer temperature synchronization and summer precipitation higher than mean summer precipitation synchronization. The results indicate that more precipitation in the spring and summer is helpful for radial growth while warmer summer restricts radial growth of P. crassifolia at the lower tree line in the middle Qilian mountains. 展开更多
关键词 Qilian mountains Picea crassifolia annual ring width earlywood width latewood width response to climate change
下载PDF
ZmDRR206 functions in maintaining cell wall integrity during maize seedling growth and defense response to external stresses
16
作者 Tao Zhong Suining Deng +3 位作者 Mang Zhu Xingming Fan Mingliang Xu Jianrong Ye 《The Crop Journal》 SCIE CSCD 2023年第6期1649-1664,共16页
Plants adaptively change their cell wall composition and structure during their growth,development,and interactions with environmental stresses.Dirigent proteins(DIRs)contribute to environmental adaptations by dynamic... Plants adaptively change their cell wall composition and structure during their growth,development,and interactions with environmental stresses.Dirigent proteins(DIRs)contribute to environmental adaptations by dynamically reorganizing the cell wall and/or by generating defense compounds.A maize DIR,ZmDRR206,was previously reported to play a dominant role in regulation of storage nutrient accumulation in endosperm during maize kernel development.Here we show that ZmDRR206 mediates maize seedling growth and disease resistance by coordinately regulating biosynthesis of cell wall components for cell-wall integrity(CWI)maintenance.Expression of ZmDRR206 was induced in maize seedlings upon pathogen infection.ZmDRR206 overexpression in maize resulted in reduced seedling growth and photosynthetic activity but increased disease resistance and drought tolerance,revealing a tradeoff between growth and defense.Consistently,ZmDRR206 overexpression reduced the contents of primary metabolites and down-regulated genes involved in photosynthesis,while increasing the contents of major cell wall components,defense phytohormones,and defense metabolites,and up-regulated genes involved in defense and cell-wall biosynthesis in seedlings.ZmDRR206-overexpressing seedlings were resistant to cell-wall stress imposed by isoxaben,and ZmDRR206 physically interacted with ZmCesA10,which is a cellulose synthase unit.Our findings suggest a mechanism by which ZmDRR206 coordinately regulates biosynthesis of cell-wall components for CWI maintenance during maize seedling growth,and might be exploited for breeding strong disease resistance in maize. 展开更多
关键词 Cell-wall integrity Cell-wall biosynthesis Dirigent protein ZmDRR206 Defense response Seedling growth
下载PDF
Simulation of the Radiative Effect of Black Carbon Aerosols and the Regional Climate Responses over China 被引量:21
17
作者 吴涧 蒋维楣 +3 位作者 符淙斌 苏炳凯 刘红年 汤剑平 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2004年第4期637-649,共13页
As part of the development work of the Chinese new regional climate model (RIEMS), the radiative process of black carbon (BC) aerosols has been introduced into the original radiative procedures of RIEMS, and the trans... As part of the development work of the Chinese new regional climate model (RIEMS), the radiative process of black carbon (BC) aerosols has been introduced into the original radiative procedures of RIEMS, and the transport model of BC aerosols has also been established and combined with the RIEMS model. Using the new model system, the distribution of black carbon aerosols and their radiative effect over the China region are investigated. The influences of BC aerosole on the atmospheric radiative transfer and on the air temperature, land surface temperature, and total rainfall are analyzed. It is found that BC aerosols induce a positive radiative forcing at the top of the atmosphere (TOA), which is dominated by shortwave radiative forcing. The maximum radiative forcing occurs in North China in July and in South China in April. At the same time, negative radiative forcing is observed on the surface. Based on the radiative forcing comparison between clear sky and cloudy sky, it is found that cloud can enforce the TOA positive radiative forcing and decrease the negative surface radiative forcing. The responses of the climate system in July to the radiative forcing due to BC aerosols are the decrease in the air temperature in the middle and lower reaches of the Changjiang River and Huaihe area and most areas of South China, and the weak increase or decrease in air temperature over North China. The total rainfall in the middle and lower reaches of the Changjiang River area is increased, but it decreased in North China in July. 展开更多
关键词 black carbon aerosols radiative effect climate responses RIEMS model
下载PDF
Landslide Developmental Characteristics and Response to Climate Change since the Last Glacial in the Upper Reaches of the Yellow River, NE Tibetan Plateau 被引量:18
18
作者 YIN Zhiqiang QIN Xiaoguang +2 位作者 YIN Yueping ZHAO Wuji WEI Gang 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2014年第2期635-646,共12页
The upper reaches of the Yellow River in northeastern Tibetan Plateau are geohazards areas.The evolution of the Yellow River,chronology of some landslides,and spatiotemporal distribution characteristics of super large... The upper reaches of the Yellow River in northeastern Tibetan Plateau are geohazards areas.The evolution of the Yellow River,chronology of some landslides,and spatiotemporal distribution characteristics of super large scale and giant landslides within the region are summarized using paleoclimate evidence,and the relationship between the intensive landslide period and climatic changes since the Last Glacial period is analyzed.It is concluded that (1) Super large scale and giant landslides are distributed widely within the region,particularly in the Qunke-Jianzha basin.(2) The chronological sequence of landslides is established by dating the slip zones of landslides and analyzing the relations between landslides and their overlying or underlying loess formations.Five landslide development periods are determined:53-49 ka BP,33-24 ka BP,10-8 ka BP,5-3.5 ka BP,and the present.(3) These correspond closely to warm and wet periods during the last 100,000 years,i.e.,two weak paleosol development stages of Malan loess deposited during the last Glacial period in the Chinese loess Plateau,L1-4 and L1-2 that belong to the marine oxygen isotope stage 3,the last deglaeial period,the Holocene Optimum,and the modern global warming period.(4) Landslide triggers may be closely linked to warm and wet periods related to rapid climatic transitions. 展开更多
关键词 LANDSLIDE developmental characteristics climate change upper reaches of the Yellow River response
下载PDF
Geographic Variation of Rice Yield Response to Past Climate Change in China 被引量:9
19
作者 YANG Jie XIONG Wei +2 位作者 YANG Xiao-guang CAO Yang FENG Ling-zhi 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2014年第7期1586-1598,共13页
Previous studies demonstrated climate change had reduced rice yield in China, but the magnitude of the reduction and the spatial variations of the impact have remained in controversy to date. Based on a gridded daily ... Previous studies demonstrated climate change had reduced rice yield in China, but the magnitude of the reduction and the spatial variations of the impact have remained in controversy to date. Based on a gridded daily weather dataset, we found there were obvious changes in temperatures, diurnal temperature range, and radiation during the rice-growing season from 1961 to 2010 in China. These changes resulted in a signiifcant decline of simulated national rice yield (simulated with CERES-Rice), with a magnitude of 11.5%. However, changes in growing-season radiation and diurnal temperature range, not growing-season temperatures, contributed most to the simulated yield reduction, which conifrmed previous estimates by empirical studies. Yield responses to changes of the climatic variables varied across different rice production areas. In rice production areas with the mean growing-season temperature at 12-14&#176;C and above 20&#176;C, a 1&#176;C growing-season warming decreased rice yield by roughly 4%. This decrease was partly attributed to increased heat stresses and shorter growth period under the warmer climate. In some rice areas of the southern China and the Yangtze River Basin where the rice growing-season temperature was greater than 20&#176;C, decrease in the growing-season radiation partly interpreted the widespread yield decline of the simulation, suggesting the signiifcant negative contribution of recent global dimming on rice production in China's main rice areas. Whereas in the northern rice production areas with relatively low growing-season temperature, decrease of the diurnal temperature range was identiifed as the main climatic contributor for the decline of simulated rice yield, with larger decreasing magnitude under cooler areas. 展开更多
关键词 climate change yield responses RICE China
下载PDF
Tree-ring response of Larix chinensis on regional climate and sea-surface temperature variations in alpine timberline in the Qinling Mountains 被引量:4
20
作者 Boqian Yan Jian Yu +2 位作者 Qijing Liu Lihua Wang Lile Hu 《Journal of Forestry Research》 SCIE CAS CSCD 2020年第1期209-218,共10页
Tree-ring width chronologies of Larix chinensis were developed from the northern and southern slopes of the Qinling Mountains in Shaanxi Province,and climatic factors affecting the tree-ring widths of L.chinensis were... Tree-ring width chronologies of Larix chinensis were developed from the northern and southern slopes of the Qinling Mountains in Shaanxi Province,and climatic factors affecting the tree-ring widths of L.chinensis were examined.Correlation analysis showed that similar correlations between tree-ring width chronologies and climatic factors demonstrated that radial growth responded to climate change on both slopes.The radial growth of L.chinensis was mainly limited by temperature,especially the growing season.In contrast,both chronologies were negatively correlated with precipitation in May of the previous year and April of the current year.Spatial climate-correlation analyses with gridded land-surface climate data revealed that our tree-ring width chronologies contained a strong regional temperature signal over much of northcentral and eastern China.Spatial correlation with seasurface temperature fields highlights the influence of the Pacific Ocean,Indian Ocean,and North Atlantic Ocean.Wavelet coherence analysis indicated the existence of some decadal and interannual cycles in the two tree-ring width chronologies.This may suggest the influences of El Nin˜o-Southern Oscillation and solar activity on tree growth in the Qinling Mountains.These findings will help us understand the growth response of L.chinensis to climate change in the Qinling region,and they provide critical information for future climate reconstructions based on this species in semi-humid regions. 展开更多
关键词 climate response Dendroclimatic Tree-ring width L.chinensis Qinling Mountains
下载PDF
上一页 1 2 180 下一页 到第
使用帮助 返回顶部