To understand how differentially methylated genes(DMGs)might affect the pathogenesis of Kashin-Beck disease(KBD).Genome-wide methylation profiling of whole blood from 12matched KBD and controls pairs was performed...To understand how differentially methylated genes(DMGs)might affect the pathogenesis of Kashin-Beck disease(KBD).Genome-wide methylation profiling of whole blood from 12matched KBD and controls pairs was performed using a high-resolution Infinium 450 K methylation array.In total,97 CpG sites were differentially展开更多
A protocol for enrichment and adsorption of karyocyte from whole blood by using magnetic nanometer beads as solid phase absorbents was presented. The PCR amplification could be accomplished by using the nanobeads wit...A protocol for enrichment and adsorption of karyocyte from whole blood by using magnetic nanometer beads as solid phase absorbents was presented. The PCR amplification could be accomplished by using the nanobeads with karyocyte as template directly and the PCR products were applied on an oligonucleotide array to do gene typing. The HLA A PCR amplification system and a small HLA A oligonucleotide microarray were applied as the platform and an experiment protocol of separating karyocyte from whole blood using the magnetic nanometer beads (Fe 2O 3) were set up. The experimental conditions were also discussed. It showed that pH level of PBS eluent, Taq enzyme quantity and fragment length of products could influent the amplification results, and the magnetic nano beads could succeed in sample preparation in microarray to provide a promising way in automatic detection and lab on a chip.展开更多
Immunomagnetic bead(IMB)-based detection has great potential for biomedical applications.Passive and active strategies,including microfluidics and magnetic actuation methods,have been developed to mix IMBs and analyte...Immunomagnetic bead(IMB)-based detection has great potential for biomedical applications.Passive and active strategies,including microfluidics and magnetic actuation methods,have been developed to mix IMBs and analytes efficiently.However,cost-effective on-site detection using a simple microfluidic chip is challenging,and miniaturization of the magnetic driving device is imperative for portability.In this study,we propose a novel mixing method for an on-chip IMB swarm via magnetic actuation and mechanical vibration.A microfluidic chip system coupled with double spiral magnetic coils and a vibration motor was fabricated.The aggregation behavior of IMBs under magnetic fields and the diffusion behavior of the IMB swarm under mechanical vibration were analyzed in detail.Based on the synergetic effects of magnetic actuation and mechanical vibration,we achieved the highly efficient capturing of Vibrio parahaemolyticus DNA and goat anti-human immunoglobulin G by mixing the IMB swarm with the microfluidic chip.In this case,the antigen detection rate could reach~94.4%.Given its fascinating features,such IMB-microfluidic detection demonstrates significant potential for biomedical applications.展开更多
基金supported by grants from the National Natural Science Foundation of China(No.81273007)
文摘To understand how differentially methylated genes(DMGs)might affect the pathogenesis of Kashin-Beck disease(KBD).Genome-wide methylation profiling of whole blood from 12matched KBD and controls pairs was performed using a high-resolution Infinium 450 K methylation array.In total,97 CpG sites were differentially
文摘A protocol for enrichment and adsorption of karyocyte from whole blood by using magnetic nanometer beads as solid phase absorbents was presented. The PCR amplification could be accomplished by using the nanobeads with karyocyte as template directly and the PCR products were applied on an oligonucleotide array to do gene typing. The HLA A PCR amplification system and a small HLA A oligonucleotide microarray were applied as the platform and an experiment protocol of separating karyocyte from whole blood using the magnetic nanometer beads (Fe 2O 3) were set up. The experimental conditions were also discussed. It showed that pH level of PBS eluent, Taq enzyme quantity and fragment length of products could influent the amplification results, and the magnetic nano beads could succeed in sample preparation in microarray to provide a promising way in automatic detection and lab on a chip.
基金supported by the National Natural Science Foundation of China(Grant No.51975574)the Fundamental Research Funds for the Central Universities(Grant No.2020TC017)。
文摘Immunomagnetic bead(IMB)-based detection has great potential for biomedical applications.Passive and active strategies,including microfluidics and magnetic actuation methods,have been developed to mix IMBs and analytes efficiently.However,cost-effective on-site detection using a simple microfluidic chip is challenging,and miniaturization of the magnetic driving device is imperative for portability.In this study,we propose a novel mixing method for an on-chip IMB swarm via magnetic actuation and mechanical vibration.A microfluidic chip system coupled with double spiral magnetic coils and a vibration motor was fabricated.The aggregation behavior of IMBs under magnetic fields and the diffusion behavior of the IMB swarm under mechanical vibration were analyzed in detail.Based on the synergetic effects of magnetic actuation and mechanical vibration,we achieved the highly efficient capturing of Vibrio parahaemolyticus DNA and goat anti-human immunoglobulin G by mixing the IMB swarm with the microfluidic chip.In this case,the antigen detection rate could reach~94.4%.Given its fascinating features,such IMB-microfluidic detection demonstrates significant potential for biomedical applications.