Iterative hard thresholding(IHT)and compressive sampling matching pursuit(CoSaMP)are two mainstream compressed sensing algorithms using the hard thresholding operator.The guaranteed performance of the two algorithms f...Iterative hard thresholding(IHT)and compressive sampling matching pursuit(CoSaMP)are two mainstream compressed sensing algorithms using the hard thresholding operator.The guaranteed performance of the two algorithms for signal recovery was mainly analyzed in terms of the restricted isometry property(RIP)of sensing matrices.At present,the best known bound using the RIP of order 3k for guaranteed performance of IHT(with the unit stepsize)isδ3k<1/√3≈0.5774,and the bound for CoSaMP using the RIP of order 4k isδ4k<0.4782.A fundamental question in this area is whether such theoretical results can be further improved.The purpose of this paper is to affirmatively answer this question and to rigorously show that the abovementioned RIP bound for guaranteed performance of IHT can be significantly improved toδ3k<(√5−1)/2≈0.618,and the bound for CoSaMP can be improved toδ4k<0.5102.展开更多
The problems of identification and stabilization of a class of Hammerstein systems over a wireless network are investigated in this paper. A new approach for the proof of iterative identification is presented first. T...The problems of identification and stabilization of a class of Hammerstein systems over a wireless network are investigated in this paper. A new approach for the proof of iterative identification is presented first. Then a guaranteed performance controller is designed to stabilize the system. The effectiveness of the proposed approach is demonstrated by numerical examples.展开更多
It is nontrivial to achieve global zero-error regulation for uncertain nonlinear systems.The underlying problem becomes even more challenging if mismatched uncertainties and unknown time-varying control gain are invol...It is nontrivial to achieve global zero-error regulation for uncertain nonlinear systems.The underlying problem becomes even more challenging if mismatched uncertainties and unknown time-varying control gain are involved,yet certain performance specifications are also pursued.In this work,we present an adaptive control method,which,without the persistent excitation(PE)condition,is able to ensure global zero-error regulation with guaranteed output performance for parametric strict-feedback systems involving fast time-varying parameters in the feedback path and input path.The development of our control scheme benefits from generalized-dependent and-dependent functions,a novel coordinate transformation and“congelation of variables”method.Both theoretical analysis and numerical simulation verify the effectiveness and benefits of the proposed method.展开更多
The dynamics of the high-speed vehicle(HSV) is partially or completely unknown because of various reasons, such as modeling errors, in-flight failure, and external disturbances. In this paper, a global stability rob...The dynamics of the high-speed vehicle(HSV) is partially or completely unknown because of various reasons, such as modeling errors, in-flight failure, and external disturbances. In this paper, a global stability robust fuzzy controller is designed to control the flight F-16 with uncertain perturbation. For the desired H_∞ output-feedback controllers, a necessary and sufficient condition of quadratic stability is derived with the well-established results of the Lyapunov stability theory and nonnegative matrix. The controllers not only guarantee the global asymptotically stability of the resultant closed-loop system with external disturbance and parameter perturbation, but also have a desired H∞ performance in a large flight envelop(LFE).展开更多
The antifreeze critical strength and the pre-curing time of low-temperature concrete were studied by means of guaranteed rate of compressive strength and antifreeze performance for the structural safety requirement of...The antifreeze critical strength and the pre-curing time of low-temperature concrete were studied by means of guaranteed rate of compressive strength and antifreeze performance for the structural safety requirement of concrete engineering,suffering once freeze damage under air environment.It is shown that the antifreeze critical strength is 3.7-4.4MPa,pre-curing time is 18-32 h by guaranteed rate of compressive strength,and the antifreeze critical strength is 3.7-4.4MPa,pre-curing time is 18-32 h by guaranteed rate of antifreeze performance.It can be found that the method of guaranteed rate of compressive strength is sensitive to the defect which generated by freeze damage in the concrete interior.The method is fit to evaluate the antifreeze critical strength of low-temperature concrete.展开更多
基金supported by National Natural Science Foundation of China(Grant Nos.12071307 and 61571384).
文摘Iterative hard thresholding(IHT)and compressive sampling matching pursuit(CoSaMP)are two mainstream compressed sensing algorithms using the hard thresholding operator.The guaranteed performance of the two algorithms for signal recovery was mainly analyzed in terms of the restricted isometry property(RIP)of sensing matrices.At present,the best known bound using the RIP of order 3k for guaranteed performance of IHT(with the unit stepsize)isδ3k<1/√3≈0.5774,and the bound for CoSaMP using the RIP of order 4k isδ4k<0.4782.A fundamental question in this area is whether such theoretical results can be further improved.The purpose of this paper is to affirmatively answer this question and to rigorously show that the abovementioned RIP bound for guaranteed performance of IHT can be significantly improved toδ3k<(√5−1)/2≈0.618,and the bound for CoSaMP can be improved toδ4k<0.5102.
基金supported by Shanghai Engineering Research Center of Green Energy Grid-Connected Technology Center(No.13DZ2251900)Shanghai Natural Science Foundation(No.15ZR1417500)+1 种基金Young Teacher Training Program and Industry-Study-Research Cooperation Project from Shanghai Education Commission(Nos.ZZsdl13008 and CXYsdl14012)Science and Technology Commission of Shanghai Municipality(No.11jc1404000)
文摘The problems of identification and stabilization of a class of Hammerstein systems over a wireless network are investigated in this paper. A new approach for the proof of iterative identification is presented first. Then a guaranteed performance controller is designed to stabilize the system. The effectiveness of the proposed approach is demonstrated by numerical examples.
基金supported by the National Natural Science Foundation of China(61991400,61991403,61860206008,61933012)。
文摘It is nontrivial to achieve global zero-error regulation for uncertain nonlinear systems.The underlying problem becomes even more challenging if mismatched uncertainties and unknown time-varying control gain are involved,yet certain performance specifications are also pursued.In this work,we present an adaptive control method,which,without the persistent excitation(PE)condition,is able to ensure global zero-error regulation with guaranteed output performance for parametric strict-feedback systems involving fast time-varying parameters in the feedback path and input path.The development of our control scheme benefits from generalized-dependent and-dependent functions,a novel coordinate transformation and“congelation of variables”method.Both theoretical analysis and numerical simulation verify the effectiveness and benefits of the proposed method.
基金supported by the Shanghai Aerospace Science and Technology Innovation Fund under Grant No.SAST2015085
文摘The dynamics of the high-speed vehicle(HSV) is partially or completely unknown because of various reasons, such as modeling errors, in-flight failure, and external disturbances. In this paper, a global stability robust fuzzy controller is designed to control the flight F-16 with uncertain perturbation. For the desired H_∞ output-feedback controllers, a necessary and sufficient condition of quadratic stability is derived with the well-established results of the Lyapunov stability theory and nonnegative matrix. The controllers not only guarantee the global asymptotically stability of the resultant closed-loop system with external disturbance and parameter perturbation, but also have a desired H∞ performance in a large flight envelop(LFE).
基金Funded by the National Key Technology R&D Program of China for the 11th Five-Year Plan(2006BAJ04A04)the Natural Science Foundation Project of Liaoning Province(20082008)the Nationd Natural Science Foundation of China(51072122)
文摘The antifreeze critical strength and the pre-curing time of low-temperature concrete were studied by means of guaranteed rate of compressive strength and antifreeze performance for the structural safety requirement of concrete engineering,suffering once freeze damage under air environment.It is shown that the antifreeze critical strength is 3.7-4.4MPa,pre-curing time is 18-32 h by guaranteed rate of compressive strength,and the antifreeze critical strength is 3.7-4.4MPa,pre-curing time is 18-32 h by guaranteed rate of antifreeze performance.It can be found that the method of guaranteed rate of compressive strength is sensitive to the defect which generated by freeze damage in the concrete interior.The method is fit to evaluate the antifreeze critical strength of low-temperature concrete.