期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
Effect of the W-beam central guardrails on wind-blown sand deposition on desert expressways in sandy regions 被引量:5
1
作者 WANG Cui LI Shengyu +2 位作者 LEI Jiaqiang LI Zhinong CHEN Jie 《Journal of Arid Land》 SCIE CSCD 2020年第1期154-165,共12页
Many desert expressways are affected by the deposition of the wind-blown sand,which might block the movement of vehicles or cause accidents.W-beam central guardrails,which are used to improve the safety of desert expr... Many desert expressways are affected by the deposition of the wind-blown sand,which might block the movement of vehicles or cause accidents.W-beam central guardrails,which are used to improve the safety of desert expressways,are thought to influence the deposition of the wind-blown sand,but this has yet not to be studied adequately.To address this issue,we conducted a wind tunnel test to simulate and explore how the W-beam central guardrails affect the airflow,the wind-blown sand flux and the deposition of the wind-blown sand on desert expressways in sandy regions.The subgrade model is 3.5 cm high and 80.0 cm wide,with a bank slope ratio of 1:3.The W-beam central guardrails model is 3.7 cm high,which included a 1.4-cm-high W-beam and a 2.3-cm-high stand column.The wind velocity was measured by using pitot-static tubes placed at nine different heights(1,2,3,5,7,10,15,30 and 50 cm)above the floor of the chamber.The vertical distribution of the wind-blown sand flux in the wind tunnel was measured by using the sand sampler,which was sectioned into 20 intervals.In addition,we measured the wind-blown sand flux in the field at K50 of the Bachu-Shache desert expressway in the Taklimakan Desert on 11 May 2016,by using a customized 78-cm-high gradient sand sampler for the sand flux structure test.Obstruction by the subgrade leads to the formation of two weak wind zones located at the foot of the windward slope and at the leeward slope of the subgrade,and the wind velocity on the leeward side weakens significantly.The W-beam central guardrails decrease the leeward wind velocity,whereas the velocity increases through the bottom gaps and over the top of the W-beam central guardrails.The vertical distribution of the wind-blown sand flux measured by wind tunnel follows neither a power-law nor an exponential function when affected by either the subgrade or the W-beam central guardrails.At 0.0H and 0.5H(where H=3.5 cm,which is the height of the subgrade),the sand transport is less at the 3 cm height from the subgrade surface than at the 1 and 5 cm heights as a result of obstruction by the W-beam central guardrails,and the maximum sand transportation occurs at the 5 cm height affected by the subgrade surface.The average saltation height in the presence of the W-beam central guardrails is greater than the subgrade height.The field test shows that the sand deposits on the overtaking lane leeward of the W-beam central guardrails and that the thickness of the deposited sand is determined by the difference in the sand mass transported between the inlet and outlet points,which is consistent with the position of the minimum wind velocity in the wind tunnel test.The results of this study could help us to understand the hazards of the wind-blown sand onto subgrade with the W-beam central guardrails. 展开更多
关键词 wind velocity field wind-blown sand flux W-beam central guardrails sand deposition desert expressway wind tunnel test Taklimakan Desert
下载PDF
Effects of different types of guardrails on sand transportation of desert highway pavement 被引量:1
2
作者 GAO Li CHENG Jianjun +1 位作者 WANG Haifeng YUAN Xinxin 《Journal of Arid Land》 SCIE CSCD 2022年第9期993-1008,共16页
Guardrail,an important highway traffic safety facility,is mainly used to prevent vehicles from accidentally driving off the road and to ensure driving safety.Desert highway guardrails hinder the movement of wind-blown... Guardrail,an important highway traffic safety facility,is mainly used to prevent vehicles from accidentally driving off the road and to ensure driving safety.Desert highway guardrails hinder the movement of wind-blown sand,resulting in the decline of sand transportation by the pavement and the deposition of sand gains on the pavement,and endangering traffic safety.To reveal the influence of guardrails on sand transportation of desert highway pavement,we tested the flow field and sand transport volume distribution around the concrete,W-beam,and cable guardrails under different wind velocities through wind tunnel simulation.Wind velocity attenuation coefficients,sand transportation quantity,and sand transportation efficiency are used to measure sand transportation of highway pavement.The results show that the sand transportation of highway pavement was closely related to the zoning characteristics of flow field and variation of wind velocity around the guardrails.The flow field of the concrete guardrail was divided into deceleration,acceleration,and vortex zones.The interaction between the W-beam guardrail and wind-blown sand was similar to that of lower wind deflector.Behind and under the plates,there were the vortex zone and acceleration zone,respectively.The acceleration zone was conducive to transporting sand on the pavement.The cable guardrail only caused wind velocity variability within the height range of guardrail,and there was no sand deposition on the highway pavement.When the cable,W-beam,and concrete guardrails were used,the total transportation quantities on the highway pavement were 423.53,415.74,and 136.53 g/min,respectively,and sand transportation efficiencies were 99.31%,91.25%,and 12.84%,respectively.From the perspective of effective sand transportation on the pavement,the cable guardrail should be preferred as a desert highway guardrail,followed by the W-beam guardrail,and the concrete guardrail is unsuitable.The study results provide theoretical basis for the optimal design of desert highway guardrails and the prevention of wind-blown sand disasters on the highway pavement. 展开更多
关键词 desert highway wind-blown sand GUARDRAIL sand transportation capacity wind tunnel test
下载PDF
Simulation research on collisions between highway corrugated beam guardrails and vehicles based on LS-DYNA
3
作者 Yongming He Yanan Wan +2 位作者 Kun Wei Jia Feng Cong Quan 《Digital Transportation and Safety》 2023年第1期52-66,共15页
To explore the safety of highway traffic operations,the vehicle state and guardrail deformation during highway guardrail collisions are simulated and analyzed.The vehicle-guardrail collision is simulated by finite ele... To explore the safety of highway traffic operations,the vehicle state and guardrail deformation during highway guardrail collisions are simulated and analyzed.The vehicle-guardrail collision is simulated by finite element software such as LS-DYNA and HyperMesh.The vehicle speed settings are 60,80,100 and 120 km/h,and the collision angles are 5°,10°,15°and 20°.The guardrail deformation,vehicle acceleration and energy changes under different collision speeds and angles are studied.The research results show that at the same collision speed,an increase in the collision angle causes more serious damage to the vehicle,a greater transverse displacement of the guardrail,and a greater range of car acceleration fluctuations.When the collision angle is the same,an increase in the collision speed causes greater lateral displacement of the guardrail,a greater vehicle acceleration fluctuation range,and more serious vehicle damage.The results of the study can provide a reference for demonstrating highway guardrail safety. 展开更多
关键词 Highway traffic Highway guardrail Traffic safety Vehicle-guardrail collision Finite element simulation
下载PDF
Highway Concrete Guardrail Lifting Scheme and Safety Performance Verification 被引量:1
4
作者 Ronggui Zhou Yidan Xie Jiangang Qiao 《Journal of Transportation Technologies》 2021年第1期1-13,共13页
In order to achieve the old fence of reuse, improve the safety performance of guardrail, barrier structure does not meet the requirements, make full use of the old concrete guardrail on the basis of heightening, throu... In order to achieve the old fence of reuse, improve the safety performance of guardrail, barrier structure does not meet the requirements, make full use of the old concrete guardrail on the basis of heightening, through computer simulation experiment were analyzed, and optimization design, through the real car collision test, make the concrete guardrail after heightening structure satisfies the requirement of </span><span style="font-family:Verdana;">the </span><span style="font-family:Verdana;">safety performance of current specification. The results show that the protective performance of the two guardrail schemes meets the requirements of the current guardrail evaluation standards through the computer simulation experiment. Through the optimized design of scheme 1, the actual car crash test proves that the enhanced structure of Minhua TYPE II concrete guardrail can meet the requirements of safety performance evaluation. The research results provide an important basis for the transformation of </span><span style="font-family:Verdana;">the </span><span style="font-family:Verdana;">guardrail and the revision of the current design of expressway in China. 展开更多
关键词 Concrete Guardrail Scheme Optimization SIMULATION Real Vehicle Collision Safety Performance
下载PDF
Evaluation of Guardrail Posts Installed in Asphalt Mow Strips by Static Finite Element Simulation 被引量:1
5
作者 Esmaeel Bakhtiary Seo-Hun Lee +2 位作者 David W. Scott Lauren K. Stewart Donald W. White 《Open Journal of Civil Engineering》 2017年第1期141-164,共24页
Asphalt mow strips are typically used as vegetation barriers around guardrail posts in the design of roadside safety structures. Asphalt mow strips have historically been modeled as a rigid layer in simulations;this a... Asphalt mow strips are typically used as vegetation barriers around guardrail posts in the design of roadside safety structures. Asphalt mow strips have historically been modeled as a rigid layer in simulations;this assumption results in significant ground level restraint on the guardrail post. However, experiments have shown that asphalt rupture should be considered in the analysis of the response of guardrail posts embedded in mow strips. The present study investigates the effect of asphalt material properties and mow strip geometry on guardrail post performance using finite element simulations. Numerical simulations are performed and correlated with results from static experiments and material testing. The test simulations and experimental results are used to evaluate the response of guardrail posts with various mow strip designs to predict the level of restraint from the asphalt layer. The model is then used to investigate the effects of asphalt material properties and mow strip geometry on the overall performance of the system. The results demonstrate that including asphalt rupture in numerical simulations is essential in accurately predicting the behavior of guardrail posts installed in asphalt mow strips. In addition, mow strip geometry along with asphalt material properties significantly affect the guardrail post response. 展开更多
关键词 GUARDRAIL POSTS ASPHALT MOW STRIPS LS-DYNA Finite Element Simulations ROADWAY Safety
下载PDF
Prioritization methodology for roadside and guardrail improvement:Quantitative calculation of safety level and optimization of resources allocation
6
作者 Giuseppe Loprencipe Laura Moretti +1 位作者 Giuseppe Cantisani Paolo Minati 《Journal of Traffic and Transportation Engineering(English Edition)》 2018年第5期348-360,共13页
The attention to road safety-related issues has grown fast in recent decades. The experi- ence gained with these themes reveals the importance of considering these aspects in the resource allocation process for roadsi... The attention to road safety-related issues has grown fast in recent decades. The experi- ence gained with these themes reveals the importance of considering these aspects in the resource allocation process for roadside and guardrail improvement, which is a complex process often involves conflicting objectives. This work consists on defining an innovative methodology, with the objective of calculating and analysing a numerical risk factor of a road. The method considers geometry, accident rate, traffic of the examined road and four categories of elements/defects where the resources can be allocated to improve the road safety (safety barriers, discrete obstacles, continuous obstacles, and water drainage). The analysis allows the assessment of the hazard index, which could be used in decision- making processes. A case study is presented to analyse roadsides of a 995 km long road network, using the cost-benefit analysis, and to prioritize possible rehabilitation work. The results highlighted that it is suitable to intervene on roads belonging to higher classes of risk, where it is possible to maximize the benefit in terms of safety as consequence of rehabilitation works (i.e., new barrier installation, removal and new barrier installation, and new terminal installation). The proposed method is quantitative; therefore, it avoids providing weak and far from reliable results; moreover, it guarantees a broad vision for the problem, giving a useful tool for road management body. 展开更多
关键词 Roadside safety Guardrail improvement OPTIMIZATION Resources allocation Road management
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部