Herein,we report on the guest-responsive hierarchical self-assembly of dissymmetric cage DC-1 with an intrinsic dipole along its C_(3)-symmetric axis.DC-1 molecules self-assemble into supramolecular columns with themo...Herein,we report on the guest-responsive hierarchical self-assembly of dissymmetric cage DC-1 with an intrinsic dipole along its C_(3)-symmetric axis.DC-1 molecules self-assemble into supramolecular columns with themolecular dipoles aligned along the columnar axis.Mediated by different host-guest interactions of ethyl acetate(EtOAc)and chloroform(CHCl_(3)),the columns are arranged in an antiparallel and parallel fashion,respectively,leading to a switch of the centrosym metric and noncentrosymmetric superstructures.The symmetry of themolecular packing of DC-1 molecules of the noncentrosymmetric crystalline phase is therefore broken,producing a supramolecular ferroelectric with second-harmonic generation and piezoelectric responses.We demonstrate that cages can serve as promising building blocks for the discovery of supramolecular materials with emergent functions and properties,including but not limited to,organic ferroelectrics and nonlinear optics.展开更多
基金supported by the Shanghai Natural Science Foundation(no.18ZR1420800)National Natural Science Foundation of China(no.21890733,22071153).
文摘Herein,we report on the guest-responsive hierarchical self-assembly of dissymmetric cage DC-1 with an intrinsic dipole along its C_(3)-symmetric axis.DC-1 molecules self-assemble into supramolecular columns with themolecular dipoles aligned along the columnar axis.Mediated by different host-guest interactions of ethyl acetate(EtOAc)and chloroform(CHCl_(3)),the columns are arranged in an antiparallel and parallel fashion,respectively,leading to a switch of the centrosym metric and noncentrosymmetric superstructures.The symmetry of themolecular packing of DC-1 molecules of the noncentrosymmetric crystalline phase is therefore broken,producing a supramolecular ferroelectric with second-harmonic generation and piezoelectric responses.We demonstrate that cages can serve as promising building blocks for the discovery of supramolecular materials with emergent functions and properties,including but not limited to,organic ferroelectrics and nonlinear optics.