The design of mini-missiles(MMs)presents several novel challenges.The stringent mission requirement to reach a target with a certain precision imposes a high guidance precision.The miniaturization of the size of MMs m...The design of mini-missiles(MMs)presents several novel challenges.The stringent mission requirement to reach a target with a certain precision imposes a high guidance precision.The miniaturization of the size of MMs makes the design of the guidance,navigation,and control(GNC)have a larger-thanbefore impact on the main-body design(shape,motor,and layout design)and its design objective,i.e.,flight performance.Pursuing a trade-off between flight performance and guidance precision,all the relevant interactions have to be accounted for in the design of the main body and the GNC system.Herein,a multi-objective and multidisciplinary design optimization(MDO)is proposed.Disciplines pertinent to motor,aerodynamics,layout,trajectory,flight dynamics,control,and guidance are included in the proposed MDO framework.The optimization problem seeks to maximize the range and minimize the guidance error.The problem is solved by using the nondominated sorting genetic algorithm II.An optimum design that balances a longer range with a smaller guidance error is obtained.Finally,lessons learned about the design of the MM and insights into the trade-off between flight performance and guidance precision are given by comparing the optimum design to a design provided by the traditional approach.展开更多
It is generally impossible to obtain the analytic optimal guidance law for complex nonlinear guidance systems of homing missiles,and the open loop optimal guidance law is often obtained by numerical methods,which can ...It is generally impossible to obtain the analytic optimal guidance law for complex nonlinear guidance systems of homing missiles,and the open loop optimal guidance law is often obtained by numerical methods,which can not be used directly in practice.The neural networks are trained off line using the optimal trajectory of the missile produced by the numerical open loop optimal guidance law,and then,the converged neural networks are used on line as the feedback optimal guidance law in real time.The research shows that different selections of the neural networks inputs,such as the system state variables or the rate of LOS(line of sight),may have great effect on the performances of the guidance systems for homing missiles.The robustness for several guidance laws is investigated by simulations,and the modular neural networks architectures are used to increase the approximating and generalizing abilities in the large state space.Some useful conclusions are obtained by simulation results.展开更多
The extended optima straints of miss distance and Schwartz inequality. To reduce guidance law with terminal conmpact angle is derived by the terminal acceleration and eliminate gravity disturbance absolutely, the obje...The extended optima straints of miss distance and Schwartz inequality. To reduce guidance law with terminal conmpact angle is derived by the terminal acceleration and eliminate gravity disturbance absolutely, the object function, which designs the weight of control command to be the power function of time-to-go's reciprocal, is given. And the gravity is considered when building the state equation. Based on the parsing express of the guidance command change with varying time and adjoint system analysis method, the command characteristics and the non-dimensional miss distance of the guidance law are analyzed, a design principle of guidance order coefficients is discussed. Finally, based on the requirement of engineering, the method to calculate the guidance condition and maximal required acceleration of the guidance law is given. The simulation demonstrates that not only the guidance law can satisfy the terminal position and impact angle constraints, but also the terminal acceleration can be converged toward zero, which will support a good situation for the terminal angle of attacking control.展开更多
The optimum theory and methods were adopted to design the laser beam riding guidance anti tank missile's control system in the short run. Through building the mathematical model of system, selecting a proper meth...The optimum theory and methods were adopted to design the laser beam riding guidance anti tank missile's control system in the short run. Through building the mathematical model of system, selecting a proper method and taking advantage of computer's high speed calculation and logic traits, an optimal controller was designed. Simulation results showed that the designed control system has fair performance and it satisfies the tactical and technical requirements. The results also demonstrate that by the combination of the optimizing methods and the computer the control system could be designed as soon as possible.展开更多
An optimal guidance law based on missile-target line-of-sight (LOS) angular rate is presented for intercepting a nonmaneuvering target. It is then integrated with sliding-mode control theory by using reaching-law of s...An optimal guidance law based on missile-target line-of-sight (LOS) angular rate is presented for intercepting a nonmaneuvering target. It is then integrated with sliding-mode control theory by using reaching-law of sliding-mode, in order to derive an optimal sliding-mode guidance law for intercepting a maneuvering target. The new guidance method's robustness against target maneuvers and good miss distance performance are proved by the second method of Lyapunov and simulation results. The presented guidance law is simple to implement in practical applications.展开更多
To improve the performance of the K-shortest paths search in intelligent traffic guidance systems, this paper proposes an optimal search algorithm based on the intelligent optimization search theory and the metaphor m...To improve the performance of the K-shortest paths search in intelligent traffic guidance systems, this paper proposes an optimal search algorithm based on the intelligent optimization search theory and the metaphor mechanism of vertebrate immune systems. This algorithm, applied to the urban traffic network model established by the node-expanding method, can expediently realize K-shortest paths search in the urban traffic guidance systems. Because of the immune memory and global parallel search ability from artificial immune systems, K shortest paths can be found without any repeat, which indicates evidently the superiority of the algorithm to the conventional ones. Not only does it perform a better parallelism, the algorithm also prevents premature phenomenon that often occurs in genetic algorithms. Thus, it is especially suitable for real-time requirement of the traffic guidance system and other engineering optimal applications. A case study verifies the efficiency and the practicability of the algorithm aforementioned.展开更多
For maneuvering target, the optimal trajectory shaping guidance law which can simultaneously achieve the designed specifications on miss distance and final impact angle was deduced using optimal control theory based o...For maneuvering target, the optimal trajectory shaping guidance law which can simultaneously achieve the designed specifications on miss distance and final impact angle was deduced using optimal control theory based on the time-to-go weighted function. Based on the same cost function, the closed-form solutions of the guidance law were derived when the initial displacement of missile, final impact angle, heading error and target maneuver was introduced into the lag-free guidance system. To validate the closed-form solutions, the simulation of the lag-free system was done and the simulation results exactly matched the closed-form solutions and only when the exponent is greater than zero, the final acceleration approaches to zero.展开更多
In this paper, a new adaptive optimal guidance law with impact angle and seeker’s field-of-view(FOV) angle constraints is proposed. To this end, the generalized optimal guidance law is derived first. A changeable imp...In this paper, a new adaptive optimal guidance law with impact angle and seeker’s field-of-view(FOV) angle constraints is proposed. To this end, the generalized optimal guidance law is derived first. A changeable impact angle weighting(IAW) coefficient is introduced and used to modify the guidance law to make it adaptive for all guidance constraints. After integrating the closed-form solution of the guidance command with linearized engagement kinematics, the analytic predictive models of impact angle and FOV angle are built, and the available range of IAW corresponding to constraints is certain. Next, a calculation scheme is presented to acquire the real-time value of IAW during the entire guidance process. When applying the proposed guidance law, the IAW will keep small to avoid a trajectory climbing up to limit FOV angle at an initial time but will increase with the closing target to improve impact position and angle accuracy, thereby ensuring that the guidance law can juggle orders of guidance accuracy and constraints control.展开更多
The traditional guidance law only guarantees the accuracy of attacking a target. However, the look angle and acceleration constraints are indispensable in applications. A new adaptive three-dimensional proportional na...The traditional guidance law only guarantees the accuracy of attacking a target. However, the look angle and acceleration constraints are indispensable in applications. A new adaptive three-dimensional proportional navigation(PN) guidance law is proposed based on convex optimization. Decomposition of the three-dimensional space is carried out to establish threedimensional kinematic engagements. The constraints and the performance index are disposed by using the convex optimization method. PN guidance gains can be obtained by solving the optimization problem. This solution is more rapid and programmatic than the traditional method and provides a foundation for future online guidance methods, which is of great value for engineering applications.展开更多
In this paper,an optimal guidance law for missiles with impact angle and miss distance constraints is proposed to achieve the maximal terminal velocity. The normal acceleration command that includes the timevarying co...In this paper,an optimal guidance law for missiles with impact angle and miss distance constraints is proposed to achieve the maximal terminal velocity. The normal acceleration command that includes the timevarying coefficients is introduced to satisfy the desired impact angle as well as zero miss distance according to the geometric relation and relative motion parameters between missile and target. The problem is formulated as an optimal control problem by defining the angle of velocity error and flight-path angle as state variables and maximizing a performance index of the terminal velocity. The analytical form of the proposed guidance law is obtained as the solution of the optimal control problem combining optimal control theory and numerical value computation method. Nonlinear simulations of various situations demonstrate the performance and feasibility of the proposed optimal guidance law.展开更多
The strapdown homing guidance system for some ammunition was mainly studied. A strong tracking Kalman filter was designed for the strapdown homing guidance system using the information measured by the strapdown homing...The strapdown homing guidance system for some ammunition was mainly studied. A strong tracking Kalman filter was designed for the strapdown homing guidance system using the information measured by the strapdown homing seeker to estimate relative movement variables between the ammunition and target. Then the optimal proportional law, which using the estimated information, guided the ammunition. Simulation results show that the designed strapdown homing guidance system with strong tracking Kalman filter can attack the maneuvering target effectively, and satisfy the performance index for the guided ammunition system.展开更多
Nerve guidance channels are limited by lack of topographical guidance:Treatment of sizeable nerve gaps remains problematic following peripheral nerve injury.Functional outcomes are good when neurorrhaphy,or direct en...Nerve guidance channels are limited by lack of topographical guidance:Treatment of sizeable nerve gaps remains problematic following peripheral nerve injury.Functional outcomes are good when neurorrhaphy,or direct end-to-end suture repair,is possible.The problem arises when there is significant segmental loss,which can occur following trauma as well as oncological procedures.展开更多
Based on optimal theory, the advanced optimal guidance law (AOGL) is derived for the interception endgame of maneuvering targets in step mode. The guidance system dynamics, target maneuvering dynamics and accelerati...Based on optimal theory, the advanced optimal guidance law (AOGL) is derived for the interception endgame of maneuvering targets in step mode. The guidance system dynamics, target maneuvering dynamics and acceleration, gravity acceleration are considered and their effects are dy- namically cancelled out in guidance law. A four states Kalman filter is designed to estimate the re- quired states for AOGL. Simulation results show the AOGL is less sensitive to errors caused by target maneuvering and guidance system lag, and it needs less missile acceleration in most time of guidance especially at the end of intercept than other guidance laws. Especially its acceleration is zero at the end of intercept when attacking maneuvering target.展开更多
This paper proposes a multiple-constraints-guaranteed midcourse guidance law for the interception of the hypersonic targets. In traditional midcourse law design, the constraints of the aero-thermal heating are rarely ...This paper proposes a multiple-constraints-guaranteed midcourse guidance law for the interception of the hypersonic targets. In traditional midcourse law design, the constraints of the aero-thermal heating are rarely taken into consideration. The performance of the infrared detection system may be degraded and the instability of the flight control system may be induced.To address this problem, a state-constrained model predictive static programming method is introduced such that both terminal constraints(position and angle) and optimal energy consumption can be ensured. As a result, a sub-optimal midcourse guidance,guaranteeing the aforementioned multiple-constraints to be never violated, is synthesized. Simulation results demonstrate the effectiveness of the proposed method.展开更多
Some long distance air ammunition can be used to attack large still target. According to this character and according to the mathematical description of target-missile relative motion built by the message supplied by ...Some long distance air ammunition can be used to attack large still target. According to this character and according to the mathematical description of target-missile relative motion built by the message supplied by the strapdown inertial navigation system/global position system (SINS/GPS) of air ammunition, optimal guidance law is designed by applying optimal control theory. The simulation is provided to indicate that when the air ammunition reaches the target, its line-of-sight (LOS) and LOS angular rate can nearly equal zero. So the air ammunition can get good terminal attitude, and the air ammunition reaches the target at the expected velocity and heading.展开更多
Space applications have raised the demand on autonomy, security and reliability for current transportation vehicle, which require guidance technology of vehicle must have strong robustness and adaptability. Therefore,...Space applications have raised the demand on autonomy, security and reliability for current transportation vehicle, which require guidance technology of vehicle must have strong robustness and adaptability. Therefore, it is needed to research exoatmospheric autonomous iterative guidance method with stronger adaptivity and higher accuracy. Based on preliminary research results, two new iterative models with performance index of maximum terminal energy for exoatmospheric autonomous iterative guidance method are proposed in this paper. Then comparative analysis between preliminary research iterative model and two new iterative models proposed is performed. The results demonstrate that the inner update iterative model proposed is the least sensitive to initial values and have the best convergence and performance in the three iterative models.展开更多
A new kinetic optimal midcourse guidance law is derived based on optimal control formulation. A new simplified Runge-Kutta grade numerical method is proposed to find the optimal trajectory. Real data of an Mr-to-air m...A new kinetic optimal midcourse guidance law is derived based on optimal control formulation. A new simplified Runge-Kutta grade numerical method is proposed to find the optimal trajectory. Real data of an Mr-to-air missile is referred to for comparing results using the kinetic optimal midcourse guidance law with those under both the kinematic optimal guidance law and singular perturbation sub-optimal guidance law, wherein the latter two laws are modified in this paper by adding a vertical g-bias command to each law for the sake of trajectory shaping. Simulation results show that using the new kinetic optimal mideourse guidance law can help save energy and maximize terminal velocity effectively.展开更多
This paper mainly studies the problem of using UAVs to provide accurate remote target indication for hypersonic projectiles.Based on the optimal trajectory trends and feedback guidance methods,a new cooperative contro...This paper mainly studies the problem of using UAVs to provide accurate remote target indication for hypersonic projectiles.Based on the optimal trajectory trends and feedback guidance methods,a new cooperative control algorithm is proposed to optimize trajectories of multi-UAVs for target tracking in approaching stage.Based on UAV kinematics and sensor performance models,optimal trajectory trends of UAVs are analyzed theoretically.Then,feedback guidance methods are proposed under the optimal observation trends of UAVs in the approaching target stage,producing trajectories with far less computational complexity and performance very close to the best-known trajectories.Next,the sufficient condition for the UAV to form the optimal observation configuration by the feedback guidance method is presented,which guarantees that the proposed method can optimize the observation trajectory of the UAV in approaching stage.Finally,the feedback guidance method is numerically simulated.Simulation results demonstrate that the estimation performance of the feedback guidance method is superior to the Lyapunov guidance vector field(LGVF)method and verify the effectiveness of the proposed method.Additionally,compared with the receding horizon optimization(RHO)method,the proposed method has the same optimization ability as the RHO method and better real-time performance.展开更多
With the development of satellite communication,in order to solve the problems of shortage of on-board resources and refinement of delay requirements to improve the communication performance of satellite optical netwo...With the development of satellite communication,in order to solve the problems of shortage of on-board resources and refinement of delay requirements to improve the communication performance of satellite optical networks,this paper proposes a bee colony optimization algorithm for routing and wavelength assignment based on directional guidance(DBCO-RWA)in satellite optical networks.In D-BCORWA,directional guidance based on relative position and link load is defined,and then the link cost function in the path search stage is established based on the directional guidance factor.Finally,feasible solutions are expanded in the global optimization stage.The wavelength utilization,communication success probability,blocking rate,communication hops and convergence characteristic are simulated.The results show that the performance of the proposed algorithm is improved compared with existing algorithms.展开更多
Optimal gliding guidance for a guided bomb unit in the vertical plane is studied based on nonlinear dynamics and kinematics.The guidance law is designed under minimum energy loss index.To avoid the complexity in solvi...Optimal gliding guidance for a guided bomb unit in the vertical plane is studied based on nonlinear dynamics and kinematics.The guidance law is designed under minimum energy loss index.To avoid the complexity in solving two-point-boundary-value problems,the steady-state solutions of the adjoint states in regular equations are suggested to be used.With these considerations,a quasi-closed,optimal gliding guidance law is obtained.The guidance law is described by the angle of attack in a simple nonlinear equation.An iterative computation method can be easily used to get the optimal angle of attack.The further simplified direct computation algorithm for the optimal angle of attack is also given.The guidance properties are compared with those of maximum lift-to-drag angle of attack control.The simulation results demonstrate that the quasi-closed,optimal gliding guidance law can improve the gliding phase terminal performance with significant increase in the altitude and much little decrease in the speed.展开更多
文摘The design of mini-missiles(MMs)presents several novel challenges.The stringent mission requirement to reach a target with a certain precision imposes a high guidance precision.The miniaturization of the size of MMs makes the design of the guidance,navigation,and control(GNC)have a larger-thanbefore impact on the main-body design(shape,motor,and layout design)and its design objective,i.e.,flight performance.Pursuing a trade-off between flight performance and guidance precision,all the relevant interactions have to be accounted for in the design of the main body and the GNC system.Herein,a multi-objective and multidisciplinary design optimization(MDO)is proposed.Disciplines pertinent to motor,aerodynamics,layout,trajectory,flight dynamics,control,and guidance are included in the proposed MDO framework.The optimization problem seeks to maximize the range and minimize the guidance error.The problem is solved by using the nondominated sorting genetic algorithm II.An optimum design that balances a longer range with a smaller guidance error is obtained.Finally,lessons learned about the design of the MM and insights into the trade-off between flight performance and guidance precision are given by comparing the optimum design to a design provided by the traditional approach.
文摘It is generally impossible to obtain the analytic optimal guidance law for complex nonlinear guidance systems of homing missiles,and the open loop optimal guidance law is often obtained by numerical methods,which can not be used directly in practice.The neural networks are trained off line using the optimal trajectory of the missile produced by the numerical open loop optimal guidance law,and then,the converged neural networks are used on line as the feedback optimal guidance law in real time.The research shows that different selections of the neural networks inputs,such as the system state variables or the rate of LOS(line of sight),may have great effect on the performances of the guidance systems for homing missiles.The robustness for several guidance laws is investigated by simulations,and the modular neural networks architectures are used to increase the approximating and generalizing abilities in the large state space.Some useful conclusions are obtained by simulation results.
基金supported by the National Natural Science Foundation of China(50875024)
文摘The extended optima straints of miss distance and Schwartz inequality. To reduce guidance law with terminal conmpact angle is derived by the terminal acceleration and eliminate gravity disturbance absolutely, the object function, which designs the weight of control command to be the power function of time-to-go's reciprocal, is given. And the gravity is considered when building the state equation. Based on the parsing express of the guidance command change with varying time and adjoint system analysis method, the command characteristics and the non-dimensional miss distance of the guidance law are analyzed, a design principle of guidance order coefficients is discussed. Finally, based on the requirement of engineering, the method to calculate the guidance condition and maximal required acceleration of the guidance law is given. The simulation demonstrates that not only the guidance law can satisfy the terminal position and impact angle constraints, but also the terminal acceleration can be converged toward zero, which will support a good situation for the terminal angle of attacking control.
文摘The optimum theory and methods were adopted to design the laser beam riding guidance anti tank missile's control system in the short run. Through building the mathematical model of system, selecting a proper method and taking advantage of computer's high speed calculation and logic traits, an optimal controller was designed. Simulation results showed that the designed control system has fair performance and it satisfies the tactical and technical requirements. The results also demonstrate that by the combination of the optimizing methods and the computer the control system could be designed as soon as possible.
文摘An optimal guidance law based on missile-target line-of-sight (LOS) angular rate is presented for intercepting a nonmaneuvering target. It is then integrated with sliding-mode control theory by using reaching-law of sliding-mode, in order to derive an optimal sliding-mode guidance law for intercepting a maneuvering target. The new guidance method's robustness against target maneuvers and good miss distance performance are proved by the second method of Lyapunov and simulation results. The presented guidance law is simple to implement in practical applications.
基金This work was supported by the Natural Science Foundation of Shandong Province(No.Y2005G12)National Natural ScienceFoundation of China(No.60674062)and the Information Industry Foundation of Shandong Province(No.2006R00046).
文摘To improve the performance of the K-shortest paths search in intelligent traffic guidance systems, this paper proposes an optimal search algorithm based on the intelligent optimization search theory and the metaphor mechanism of vertebrate immune systems. This algorithm, applied to the urban traffic network model established by the node-expanding method, can expediently realize K-shortest paths search in the urban traffic guidance systems. Because of the immune memory and global parallel search ability from artificial immune systems, K shortest paths can be found without any repeat, which indicates evidently the superiority of the algorithm to the conventional ones. Not only does it perform a better parallelism, the algorithm also prevents premature phenomenon that often occurs in genetic algorithms. Thus, it is especially suitable for real-time requirement of the traffic guidance system and other engineering optimal applications. A case study verifies the efficiency and the practicability of the algorithm aforementioned.
文摘For maneuvering target, the optimal trajectory shaping guidance law which can simultaneously achieve the designed specifications on miss distance and final impact angle was deduced using optimal control theory based on the time-to-go weighted function. Based on the same cost function, the closed-form solutions of the guidance law were derived when the initial displacement of missile, final impact angle, heading error and target maneuver was introduced into the lag-free guidance system. To validate the closed-form solutions, the simulation of the lag-free system was done and the simulation results exactly matched the closed-form solutions and only when the exponent is greater than zero, the final acceleration approaches to zero.
基金supported by the Aeronautical Science Foundation of China(20150172001)
文摘In this paper, a new adaptive optimal guidance law with impact angle and seeker’s field-of-view(FOV) angle constraints is proposed. To this end, the generalized optimal guidance law is derived first. A changeable impact angle weighting(IAW) coefficient is introduced and used to modify the guidance law to make it adaptive for all guidance constraints. After integrating the closed-form solution of the guidance command with linearized engagement kinematics, the analytic predictive models of impact angle and FOV angle are built, and the available range of IAW corresponding to constraints is certain. Next, a calculation scheme is presented to acquire the real-time value of IAW during the entire guidance process. When applying the proposed guidance law, the IAW will keep small to avoid a trajectory climbing up to limit FOV angle at an initial time but will increase with the closing target to improve impact position and angle accuracy, thereby ensuring that the guidance law can juggle orders of guidance accuracy and constraints control.
基金supported by the National Natural Science Foundation of China(61803357)。
文摘The traditional guidance law only guarantees the accuracy of attacking a target. However, the look angle and acceleration constraints are indispensable in applications. A new adaptive three-dimensional proportional navigation(PN) guidance law is proposed based on convex optimization. Decomposition of the three-dimensional space is carried out to establish threedimensional kinematic engagements. The constraints and the performance index are disposed by using the convex optimization method. PN guidance gains can be obtained by solving the optimization problem. This solution is more rapid and programmatic than the traditional method and provides a foundation for future online guidance methods, which is of great value for engineering applications.
基金Sponsored by the National Security Academic Foundation(Grant No.11176012)the CALT University Joint innovation Foundation(Grant No.CALT 201302)
文摘In this paper,an optimal guidance law for missiles with impact angle and miss distance constraints is proposed to achieve the maximal terminal velocity. The normal acceleration command that includes the timevarying coefficients is introduced to satisfy the desired impact angle as well as zero miss distance according to the geometric relation and relative motion parameters between missile and target. The problem is formulated as an optimal control problem by defining the angle of velocity error and flight-path angle as state variables and maximizing a performance index of the terminal velocity. The analytical form of the proposed guidance law is obtained as the solution of the optimal control problem combining optimal control theory and numerical value computation method. Nonlinear simulations of various situations demonstrate the performance and feasibility of the proposed optimal guidance law.
文摘The strapdown homing guidance system for some ammunition was mainly studied. A strong tracking Kalman filter was designed for the strapdown homing guidance system using the information measured by the strapdown homing seeker to estimate relative movement variables between the ammunition and target. Then the optimal proportional law, which using the estimated information, guided the ammunition. Simulation results show that the designed strapdown homing guidance system with strong tracking Kalman filter can attack the maneuvering target effectively, and satisfy the performance index for the guided ammunition system.
文摘Nerve guidance channels are limited by lack of topographical guidance:Treatment of sizeable nerve gaps remains problematic following peripheral nerve injury.Functional outcomes are good when neurorrhaphy,or direct end-to-end suture repair,is possible.The problem arises when there is significant segmental loss,which can occur following trauma as well as oncological procedures.
基金Supported by China Postdoctoral Science Foundation (2012T50048)
文摘Based on optimal theory, the advanced optimal guidance law (AOGL) is derived for the interception endgame of maneuvering targets in step mode. The guidance system dynamics, target maneuvering dynamics and acceleration, gravity acceleration are considered and their effects are dy- namically cancelled out in guidance law. A four states Kalman filter is designed to estimate the re- quired states for AOGL. Simulation results show the AOGL is less sensitive to errors caused by target maneuvering and guidance system lag, and it needs less missile acceleration in most time of guidance especially at the end of intercept than other guidance laws. Especially its acceleration is zero at the end of intercept when attacking maneuvering target.
基金supported by the National Natural Science Foundation of China(61503302)the joint fund of the National Natural Science Foundation Committee and China Academy of Engineering Physics(U1630127)
文摘This paper proposes a multiple-constraints-guaranteed midcourse guidance law for the interception of the hypersonic targets. In traditional midcourse law design, the constraints of the aero-thermal heating are rarely taken into consideration. The performance of the infrared detection system may be degraded and the instability of the flight control system may be induced.To address this problem, a state-constrained model predictive static programming method is introduced such that both terminal constraints(position and angle) and optimal energy consumption can be ensured. As a result, a sub-optimal midcourse guidance,guaranteeing the aforementioned multiple-constraints to be never violated, is synthesized. Simulation results demonstrate the effectiveness of the proposed method.
文摘Some long distance air ammunition can be used to attack large still target. According to this character and according to the mathematical description of target-missile relative motion built by the message supplied by the strapdown inertial navigation system/global position system (SINS/GPS) of air ammunition, optimal guidance law is designed by applying optimal control theory. The simulation is provided to indicate that when the air ammunition reaches the target, its line-of-sight (LOS) and LOS angular rate can nearly equal zero. So the air ammunition can get good terminal attitude, and the air ammunition reaches the target at the expected velocity and heading.
文摘Space applications have raised the demand on autonomy, security and reliability for current transportation vehicle, which require guidance technology of vehicle must have strong robustness and adaptability. Therefore, it is needed to research exoatmospheric autonomous iterative guidance method with stronger adaptivity and higher accuracy. Based on preliminary research results, two new iterative models with performance index of maximum terminal energy for exoatmospheric autonomous iterative guidance method are proposed in this paper. Then comparative analysis between preliminary research iterative model and two new iterative models proposed is performed. The results demonstrate that the inner update iterative model proposed is the least sensitive to initial values and have the best convergence and performance in the three iterative models.
文摘A new kinetic optimal midcourse guidance law is derived based on optimal control formulation. A new simplified Runge-Kutta grade numerical method is proposed to find the optimal trajectory. Real data of an Mr-to-air missile is referred to for comparing results using the kinetic optimal midcourse guidance law with those under both the kinematic optimal guidance law and singular perturbation sub-optimal guidance law, wherein the latter two laws are modified in this paper by adding a vertical g-bias command to each law for the sake of trajectory shaping. Simulation results show that using the new kinetic optimal mideourse guidance law can help save energy and maximize terminal velocity effectively.
基金support from the National Natural Science Foundation of China(No.61773395)。
文摘This paper mainly studies the problem of using UAVs to provide accurate remote target indication for hypersonic projectiles.Based on the optimal trajectory trends and feedback guidance methods,a new cooperative control algorithm is proposed to optimize trajectories of multi-UAVs for target tracking in approaching stage.Based on UAV kinematics and sensor performance models,optimal trajectory trends of UAVs are analyzed theoretically.Then,feedback guidance methods are proposed under the optimal observation trends of UAVs in the approaching target stage,producing trajectories with far less computational complexity and performance very close to the best-known trajectories.Next,the sufficient condition for the UAV to form the optimal observation configuration by the feedback guidance method is presented,which guarantees that the proposed method can optimize the observation trajectory of the UAV in approaching stage.Finally,the feedback guidance method is numerically simulated.Simulation results demonstrate that the estimation performance of the feedback guidance method is superior to the Lyapunov guidance vector field(LGVF)method and verify the effectiveness of the proposed method.Additionally,compared with the receding horizon optimization(RHO)method,the proposed method has the same optimization ability as the RHO method and better real-time performance.
基金supported in part by the National Key Research and Development Program of China under Grant 2021YFB2900604in part by the National Natural Science Foundation of China(NSFC)under Grant U22B2033,61975234,61875230。
文摘With the development of satellite communication,in order to solve the problems of shortage of on-board resources and refinement of delay requirements to improve the communication performance of satellite optical networks,this paper proposes a bee colony optimization algorithm for routing and wavelength assignment based on directional guidance(DBCO-RWA)in satellite optical networks.In D-BCORWA,directional guidance based on relative position and link load is defined,and then the link cost function in the path search stage is established based on the directional guidance factor.Finally,feasible solutions are expanded in the global optimization stage.The wavelength utilization,communication success probability,blocking rate,communication hops and convergence characteristic are simulated.The results show that the performance of the proposed algorithm is improved compared with existing algorithms.
文摘Optimal gliding guidance for a guided bomb unit in the vertical plane is studied based on nonlinear dynamics and kinematics.The guidance law is designed under minimum energy loss index.To avoid the complexity in solving two-point-boundary-value problems,the steady-state solutions of the adjoint states in regular equations are suggested to be used.With these considerations,a quasi-closed,optimal gliding guidance law is obtained.The guidance law is described by the angle of attack in a simple nonlinear equation.An iterative computation method can be easily used to get the optimal angle of attack.The further simplified direct computation algorithm for the optimal angle of attack is also given.The guidance properties are compared with those of maximum lift-to-drag angle of attack control.The simulation results demonstrate that the quasi-closed,optimal gliding guidance law can improve the gliding phase terminal performance with significant increase in the altitude and much little decrease in the speed.